Skip to main content

The Cohomology of \(\mathcal{M}_{0,n}\) as an FI-Module

  • Chapter
  • First Online:
Configuration Spaces

Part of the book series: Springer INdAM Series ((SINDAMS,volume 14))

Abstract

In this paper we revisit the cohomology groups of the moduli space of n-pointed curves of genus zero using the FI-module perspective introduced by Church–Ellenberg–Farb. We recover known results about the corresponding representations of the symmetric group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.I. Arnol’d, On some topological invariants of algebraic functions. Trans. Moscow Math. Soc. 21, 30–51 (1970)

    Google Scholar 

  2. F. Callegaro, G. Gaiffi, On models of the braid arrangement and their hidden symmetries. Int. Math. Res. Not. IMRN (21), 11117–11149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Church, B. Farb, Representation theory and homological stability. Adv. Math. 245, 250–314 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Church, J.S. Ellenberg, B. Farb, FI-modules and stability for representations of symmetric groups. Duke Math. J. 164 (9), 1833–1910 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Church, J.S. Ellenberg, B. Farb, R. Nagpal, FI-modules over Noetherian rings. Geom. Topol. 18 (5), 2951–2984 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Etingof, A. Henriques, J. Kamnitzer, E.M. Rains, The cohomology ring of the real locus of the moduli space of stable curves of genus 0 with marked points. Ann. Math. (2) 171 (2), 731–777 (2010)

    Google Scholar 

  7. B. Farb, Representation stability, in Proceedings of the International Congress of Mathematicians, Seoul 2014, vol. II (2014), pp. 1173–1196

    Google Scholar 

  8. W. Fulton, J. Harris, Representation Theory: A First Course. Graduate Texts in Mathematics, vol. 129 (Springer, New York, 1991). Readings in Mathematics

    Google Scholar 

  9. G. Gaiffi, The actions of S n+1 and S n on the cohomology ring of a Coxeter arrangement of type A n−1. Manuscripta Math. 91 (1), 83–94 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Gaiffi, De Concini Procesi models of arrangements and symmetric group actions. Tesi di Perfezionamento della Scuola Normale Superiore di Pisa (1999)

    Google Scholar 

  11. E. Getzler, Operads and moduli spaces of genus 0 Riemann surfaces, in The Moduli Space of Curves (Texel Island, 1994). Progress in Mathematics, vol. 129 (Birkhäuser, Boston, MA, 1995), pp. 199–230

    Google Scholar 

  12. R. Jiménez Rolland, On the cohomology of pure mapping class groups as FI-modules. J. Homotopy Relat. Struct. 10 (3), 401–424 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Jiménez Rolland, J. Maya Duque, Representation stability for the pure cactus group. Preprint (2015). arXiv:1501.02835

    Google Scholar 

  14. S. Keel, Intersection theory of moduli space of stable n-pointed curves of genus zero. Trans. Am. Math. Soc. 330 (2), 545–574 (1992)

    MathSciNet  MATH  Google Scholar 

  15. M. Kisin, G.I. Lehrer, Equivariant Poincaré polynomials and counting points over finite fields. J. Algebra 247 (2), 435–451 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Kock, I. Vainsencher, An Invitation to Quantum Cohomology. Progress in Mathematics, vol. 249 (Birkhäuser, Basel, 2007)

    Google Scholar 

  17. Y.I. Manin, Generating functions in algebraic geometry and sums over trees, in The Moduli Space of Curves (Texel Island, 1994). Progress in Mathematics, vol. 129 (Birkhäuser, Boston, MA, 1995), pp. 401–417

    Google Scholar 

  18. E.M. Rains, The action of S n on the cohomology of \(\overline{M}_{0,n}(\mathbb{R})\). Selecta Math. (N.S.) 15 (1), 171–188 (2009)

    Google Scholar 

  19. S. Yuzvinsky, Cohomology bases for the De Concini-Procesi models of hyperplane arrangements and sums over trees. Invent. Math. 127 (2), 319–335 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank to Alex Suciu for pointing out a relevant reference and Jennifer Wilson for useful comments. I am grateful to the Department of Mathematics at Northeastern University for providing such appropriate working conditions that allowed the completion of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Jiménez Rolland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jiménez Rolland, R. (2016). The Cohomology of \(\mathcal{M}_{0,n}\) as an FI-Module. In: Callegaro, F., Cohen, F., De Concini, C., Feichtner, E., Gaiffi, G., Salvetti, M. (eds) Configuration Spaces. Springer INdAM Series, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-31580-5_13

Download citation

Publish with us

Policies and ethics