Skip to main content

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 980 Accesses

Abstract

The first laser ion acceleration experiments have begun with a method based on the TNSA (target normal sheath acceleration) that did not have an adiabatic process of the accelerating structure created by laser. A great deal of efforts have been dedicated to ever increase the adiabatic process of the accelerating structure with the ions since then. This acquiring of adiabaticity may be done by reducing the group velocity of the laser significantly to match that of ions, or to increase the ion velocity as fast as possible in order to match the fast accelerating structure created by laser. The methods of RPA (radiation pressure acceleration) and CAIL (coherent acceleration of ions by laser) belong to the latter. Finally, the recent entry of the single-cycle laser pulse acceleration (SCPA) marks another notch in the progress to make ion acceleration condition even more accessible and the acceleration results far more attractive by eradicating the oscillatory interference effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.I. Veksler, CERN Symposium on High Energy Accelerators and Pion Physics (CERN, Geneva, 1956), p. 80

    Google Scholar 

  2. S.E. Graybill, J.R. Uglum, J. Appl. Phys. 41, 236 (1970)

    Article  ADS  Google Scholar 

  3. J.W. Poukey, N. Rostoker, Plasma Phys. 13, 897 (1971)

    Article  ADS  Google Scholar 

  4. N. Rostoker, M. Reiser, Collective Methods of Acceleration (Harwood, London, 1979)

    Google Scholar 

  5. D.D. Ryutov, G.V. Stupakov, Soviet J. Plasma Phys. 2, 309 (1976)

    Google Scholar 

  6. F. Mako, in the Proceedings of Norman Rostoker Memorial Symposium, eds. by T. Tajima, M. Binderbauer (in publication, AIP, New York, 2016)

    Google Scholar 

  7. F. Mako, A. Fisher, N. Rostoker, D. Tzach, C.W. Roberson, I.E.E.E. Trans, Nucl. Sci. 26, 4199 (1979)

    Article  Google Scholar 

  8. F. Mako, T. Tajima, Phys. Fluids 27, 1815 (1984). See also T. Tajima, F. Mako, Phys. Fluids. 21, 1459 (1978)

    Google Scholar 

  9. R.A. Snavely, M.H. Key, S.P. Hatchett, T.E. Cowan, M. Roth, T.W. Phillips, M.A. Stoyer, E.A. Henry, T.C. Sangster, M.S. Singh, S.C. Wilks, A. MacKinnon, A. Offenberger, D.M. Pennington, K. Yasuike, A.B. Langdon, B.F. Lasinski, J. Johnson, M.D. Perry, E.M. Campbell, Phys. Rev. Lett. 85, 2945 (2000)

    Google Scholar 

  10. E.L. Clark, K. Krushelnick, J.R. Davies, M. Zepf, M. Tatarakis, F.N. Beg, A. Machacek, P.A. Norreys, M.I.K. Santala, I. Watts, A.E. Dangor, Phys. Rev. Lett. 84, 670 (2000)

    Article  ADS  Google Scholar 

  11. A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, VYu. Bychenkov, Phys. Rev. Lett. 84, 4108 (2000)

    Article  ADS  Google Scholar 

  12. P. Mora, Phys. Rev. Lett. 90, 185002 (2003)

    Article  ADS  Google Scholar 

  13. J. Fuchs, P. Antici, E. D’humières, E. Lefebvre, M. Borghesi, E. Brambrink, C.A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, P. Audebert, Nat. Phys. 2, 48 (2006)

    Google Scholar 

  14. A. Andreev, A. Levy, T. Ceccotti, C. Thaury, K. Platonov, R.A. Loch, P. Martin, Phys. Rev. Lett. 101, 155002 (2008)

    Google Scholar 

  15. A.A. Andreev, S. Steinke, T. Sokollik, M. Schnürer, S. Ter Avetsiyan, K.Y. Platonov, P.V. Nickles, Phys. Plasmas 16, 013103 (2009)

    Google Scholar 

  16. D. Neely, P. Foster, A. Robinson, F. Lindau, O. Lundh, A. Persson, C.-G. Wahlström, P. McKenna, Appl. Phys. Lett. 89, 021502 (2006)

    Google Scholar 

  17. T. Ceccotti, A. Lévy, H. Popescu, F. Réau, P. D’Oliveira, P. Monot, J.P. Geindre, E. Lefebvre, Ph. Martin, Phys. Rev. Lett. 99, 185002 (2007)

    Google Scholar 

  18. T. Esirkepov, M. Yamagiwa, T. Tajima, Phys. Rev. Lett. 96, 105001 (2006)

    Google Scholar 

  19. K. Matsukado, T. Esirkepov, K. Kinoshita, H. Daido, T. Utsumi, Z. Li, A. Fukumi, Y. Hayashi, S. Orimo, M. Nishiuchi, S.V. Bulanov, T. Tajima, A. Noda, Y. Iwashita, T. Shirai, T. Takeuchi, S. Nakamura, A. Yamazaki, M. Ikegami, T. Mihara, A. Morita, M. Uesaka, K. Yoshii, T. Watanabe, T. Hosokai, A. Zhidkov, A. Ogata, Y. Wada, T. Kubota, Phys. Rev. Lett. 91, 215001 (2003)

    Google Scholar 

  20. X.Q. Yan, C. Lin, Z.M. Sheng, Z.Y. Guo, B.C. Liu, Y.R. Lu, J.X. Fang, J.E. Chen, Phys. Rev. Lett. 100, 135003 (2008)

    Article  ADS  Google Scholar 

  21. A. Henig, S. Steinke, M. Schnürer, T. Sokollik, R. Hoerlein, D. Kiefer, D. Jung, J. Schreiber, B.M. Hegelich, X.Q. Yan, J. Meyer-ter-Vehn, T. Tajima, P.V. Nickles, W. Sandner, D. Habs, Phys. Rev. Lett. 103, 245003 (2009)

    Google Scholar 

  22. T. Tajima, D. Habs, X.Q. Yan, Rev. Accel. Sci. Tech. 2, 201 (2009)

    Article  Google Scholar 

  23. X.Q. Yan, T. Tajima, B.M. Hegelich, L. Yin, D. Habs, Appl. Phys. B 98, 711 (2009)

    Article  ADS  Google Scholar 

  24. M. Passoni, V.T. Tikhonchuk, M. Lontano, VYu. Bychenkov, Phys. Rev. E 69, 026411 (2004)

    Article  ADS  Google Scholar 

  25. J. Schreiber, F. Bell, F. Grüner, U. Schramm, M. Geissler, M. Schnürer, S. Ter-Avetisyan, B.M. Hegelich, J. Cobble, E. Brambrink, J. Fuchs, P. Audebert, D. Habs, Phys. Rev. Lett. 97, 045005 (2006)

    Article  ADS  Google Scholar 

  26. S. Steinke, A. Henig, M. Schnürer, T. Sokollik, P.V. Nickles, D. Jung, D. Kiefer, T. Tajima, X.Q. Yan, J. Meyer-ter-Vehn, W. Sandner, D. Habs, Laser Part. Beams 28, 215 (2010)

    Google Scholar 

  27. T. Esirkepov, M. Borghesi, S.V. Bulanov, G. Mourou, T. Tajima, Phys. Rev. Lett. 92, 175003 (2004)

    Article  ADS  Google Scholar 

  28. A. Macchi, F. Cattani, T.V. Liseykina, F. Cornolti, Phys. Rev. Lett. 94, 165003 (2005)

    Article  ADS  Google Scholar 

  29. A.P.L. Robinson et al., New J. Phys. 10, 013021 (2008)

    Article  ADS  Google Scholar 

  30. B.M. Hegelich et al., Nature (London) 439, 441–444 (2006)

    Article  ADS  Google Scholar 

  31. H. Schwoerer et al., Nature (London) 439, 445–448 (2006)

    Article  ADS  Google Scholar 

  32. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  33. C. Lau, P.C. Yeh, O. Luk, J. McClenaghan, T. Ebisuzaki, T. Tajima, Phys. Rev. STAB 18, 024401 (2015)

    ADS  Google Scholar 

  34. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, V. Malka, Nature 431, 541 (2004)

    Google Scholar 

  35. C.G.R. Geddes, C. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, W.P. Leemans, Nature 431, 538 (2004)

    Google Scholar 

  36. S.P.D. Mangles et al., Nature 431, 535 (2004)

    Article  ADS  Google Scholar 

  37. I Jong Kim et al., in Radiation Pressure Acceleration of Protons with Femtosecond Petawatt Laser Pulses, International Conference on Ultra-High Intensity Lasers—ICUIL 2014 (Goa, India). Available at www.icuil.org/downloads/category/37.html

  38. H. Daido, M. Nishiuchi, A.S. Pirozhkov, Rep. Prog. Phys. 75, 309 (2012)

    Article  Google Scholar 

  39. A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751 (2013)

    Google Scholar 

  40. X.Q. Yan, H.C. Wu, Z.M. Sheng, J.E. Chen, J. Meyer-ter-Vehn, Phys. Rev. Lett. 103, 135001 (2009)

    Google Scholar 

  41. Hu Ronghao, Bin Liu, Lu Haiyang, Meilin Zhou, Chen Lin, Zhengming Sheng, Chia-erh Chen, Xiantu He, Xueqing Yan, Sci. Rep. 5, 1549 (2015)

    Google Scholar 

  42. B. Rau, T. Tajima, Phys. Plasmas 5, 3575 (1998)

    Article  ADS  Google Scholar 

  43. B. Rau, T. Tajima, H. Hojo, Phys. Rev. Lett. 78, 3310 (1997)

    Article  ADS  Google Scholar 

  44. G. Mourou, S. Mironov, E. Khazanov, A. Sergeev, Euro Phys. J. Spec. Topics 223, 1181 (2014)

    Article  ADS  Google Scholar 

  45. M. Guillaume et al., CLEO 2013 CTh5C.5 (2013). doi:10.1364/CLEOSI.2013.CTh5C.5

  46. M.L. Zhou, X.Q. Yan, J.A. Wheeler, T. Tajima, G. Mourou, Presentation at IZEST Conference on Outlook on Wake Field Acceleration: the Next Frontier—CERN—Geneva—Switzerland (2015). Available at http://www.izest.polytechnique.edu/izest-home/izest-events/102015-outlook-on-wake-field-acceleration-the-next-frontier/outlook-on-wake-field-acceleration-the-next-frontier-cern-geneva-switzerland-322660.kjsp

  47. G. Mourou, B. Brocklesby, T. Tajima, J. Limpert, Nat. Photonics 7, 258 (2013)

    Article  ADS  Google Scholar 

  48. L. Spencer et al., Phys. Rev. E 67, 046402 (2003)

    Google Scholar 

  49. P. McKenna et al., Phys. Rev. E 70, 034405 (2004)

    Google Scholar 

  50. TZh Esirkepov, S.V. Bulanov, K. Nishihara, T. Tajima, F. Pegoraro, V.S. Khoroshkov, K. Mima, H. Daido, Y. Kato, Y. Kitagawa, K. Nagai, S. Sakabe, Phys. Rev. Lett. 89, 175003 (2002)

    Article  ADS  Google Scholar 

  51. T. Tajima, Proc. Jpn. Acad. Ser. B 86, 147 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The work has been supported by the Norman Rostoker Fund. I thank Dr. A. Giulietti’s encouragement throughout this work. Collaboration and discussions with Drs. M. Zhou, X.Q. Yan, G. Mourou, J. Wheeler and I.J. Kim are deeply appreciated. I dedicate this paper to the memory of the late Professor Norman Rostoker, who made education of me and remained a source of inspiration. In the final stage of the preparation of this paper (in fact the last weeks) I learned the passing of Professor Wolfgang Sandner, who was serving as Co-Chair of ICUIL (International Committee for Ultrahigh Intensity Lasers) among other leadership roles (while I serve as Chair of ICUIL). I am dedicating this paper also to the memory of Dr. Sandner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiki Tajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tajima, T. (2016). Recent Progress in Laser Ion Acceleration. In: Giulietti, A. (eds) Laser-Driven Particle Acceleration Towards Radiobiology and Medicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-31563-8_13

Download citation

Publish with us

Policies and ethics