Skip to main content

The Multi-Funnel Structure of TSP Fitness Landscapes: A Visual Exploration

  • Conference paper
  • First Online:
Artificial Evolution (EA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9554))

Abstract

We use the Local Optima Network model to study the structure of symmetric TSP fitness landscapes. The ‘big-valley’ hypothesis holds that for TSP and other combinatorial problems, local optima are not randomly distributed, instead they tend to be clustered around the global optimum. However, a recent study has observed that, for solutions close in evaluation to the global optimum, this structure breaks down into multiple valleys, forming what has been called ‘multiple funnels’. The multiple funnel concept implies that local optima are organised into clusters, so that a particular local optimum largely belongs to a particular funnel. Our study is the first to extract and visualise local optima networks for TSP and is based on a sampling methodology relying on the Chained Lin-Kernighan algorithm. We confirm the existence of multiple funnels on two selected TSP instances, finding additional funnels in a previously studied instance. Our results suggests that transitions among funnels are possible using operators such as ‘double-bridge’. However, for consistently escaping sub-optimal funnels, more robust escaping mechanisms are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde TSP solver (2003). http://www.math.uwaterloo.ca/tsp/concorde.html

  2. Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling salesman problems. INFORMS J. Comput. 15, 82–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  4. Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for combinatorial global optimizations. Oper. Res. Lett. 16, 101–113 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex System, 1695 (2006)

    Google Scholar 

  6. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exper. 21(11), 1129–1164 (1991)

    Article  Google Scholar 

  7. Hains, D.R., Whitley, L.D., Howe, A.E.: Revisiting the big valley search space structure in the TSP. J. Oper. Res. Soc. 62(2), 305–312 (2011)

    Article  Google Scholar 

  8. Helsgaun, K.: An effective implementation of the LinKernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Iclanzan, D., Daolio, F., Tomassini, M.: Data-driven local optima network characterization of QAPLIB instances. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, GECCO 2014, pp. 453–460. ACM, New York (2014)

    Google Scholar 

  10. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21, 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the traveling salesman problem. Complex Syst. 5, 299–326 (1991)

    MathSciNet  MATH  Google Scholar 

  12. Möbius, A., Freisleben, B., Merz, P., Schreiber, M.: Combinatorial optimization by iterative partial transcription. Phys. Rev. E 59(4), 4667–4674 (1999)

    Article  Google Scholar 

  13. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Book  MATH  Google Scholar 

  14. Ochoa, G., Chicano, F., Tinos, R., Whitley, D.: Tunnelling crossover networks. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 449–456. ACM (2015)

    Google Scholar 

  15. Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 555–562. ACM (2008)

    Google Scholar 

  16. Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol. 6, pp. 233–262. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  17. Reinelt, G.: TSPLIB-a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991). http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

    Article  MathSciNet  MATH  Google Scholar 

  18. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)

    Article  Google Scholar 

  19. Wales, D.J., Miller, M.A., Walsh, T.R.: Archetypal energy landscapes. Nature 394, 758–760 (1998)

    Article  Google Scholar 

  20. Whitley, D., Hains, D., Howe, A.: Tunneling between optima: partition crossover for the traveling salesman problem. In: Proceedings Genetic and Evolutionary Computation Conference, GECCO 2009, pp. 915–922. ACM, New York (2009)

    Google Scholar 

  21. Whitley, D., Hains, D., Howe, A.: A hybrid genetic algorithm for the traveling salesman problem using generalized partition crossover. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 566–575. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the UK’s Engineering and Physical Sciences Research Council [grant number EP/J017515/1].

Data Access. All data generated during this research are openly available from the Zenodo repository (http://doi.org/10.5281/zenodo.20732).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Ochoa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ochoa, G., Veerapen, N., Whitley, D., Burke, E.K. (2016). The Multi-Funnel Structure of TSP Fitness Landscapes: A Visual Exploration. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2015. Lecture Notes in Computer Science(), vol 9554. Springer, Cham. https://doi.org/10.1007/978-3-319-31471-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31471-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31470-9

  • Online ISBN: 978-3-319-31471-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics