Skip to main content

Pediatrics

  • Chapter
  • First Online:
Skin Care in Radiation Oncology

Abstract

Pediatric malignancies are a highly diverse group, collectively with involvement across all anatomic compartments.

Multi-modal interventions including post-operative or definitive radiotherapy typify management of pediatric cancers such as rhabdomyosarcoma, Ewing’s sarcoma, and Wilm’s tumor. Technological advancements in radiotherapy have enabled more focal skin-sparing radiotherapy approaches in management of pediatric malignancies, and dose de-escalation in current protocols may diminish total skin dose. However, despite technological advances, skin toxicity cannot be avoided across all anatomic sub-sites.

There are significant functional and anatomical differences between adult and pediatric skin. As compared with older individuals, the skin of children may exhibit greater water absorption and water loss, less protective melanin, and thinner stratum corneum and total epidermis. As body surface area to mass ratio decreases with age, younger patients will often experience greater percentage skin radiation exposure. Pediatric treatment protocols also routinely employ neoadjuvant and concurrent chemotherapy regimens, resulting in immunosuppression and further wound-healing impairment. Moreover, there are behavioral and psychosocial considerations with pediatric patients that further complicate adherence with treatment-related wound care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cancer Facts and Figures 2015: American Cancer Society; 2015 [cited 2015 29 April 2015]. Available from: http://www.cancer.org/acs/groups/content/@editorial/documents/document/acspc-044552.pdf.

  2. Surveillance, Epidemiology, and End Results Program, Cancer Statistics Review 1975–2012: National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services; 2015 [cited 2015 29 April 2015]. Available from: http://seer.cancer.gov/csr/1975_2012/browse_csr.php?sectionSEL=28&pageSEL=sect_28_table.02.html.

  3. Jairam V, Roberts KB, Yu JB. Historical trends in the use of radiation therapy for pediatric cancers: 1973–2008. Int J Radiat Oncol Biol Phys. 2013;85:e151–5. doi:10.1016/j.ijrobp.2012.10.007.

    Article  PubMed  Google Scholar 

  4. Min CH, Paganetti H, Winey BA, Adams J, MacDonald SM, Tarbell NJ, et al. Evaluation of permanent alopecia in pediatric medulloblastoma patients treated with proton radiation. Radiat Oncol. 2014;9:220. doi:10.1186/s13014-014-0220-8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. St Clair WH, Adams JA, Bues M, Fullerton BC, La Shell S, Kooy HM, et al. Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int J Radiat Oncol Biol Phys. 2004;58:727–34. doi:10.1016/S0360-3016(03)01574-8.

    Article  CAS  PubMed  Google Scholar 

  6. Womer RB, West DC, Krailo MD, Dickman PS, Pawel BR, Grier HE, et al. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children's Oncology Group. J Clin Oncol. 2012;30:4148–54. doi:10.1200/JCO.2011.41.5703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ladra MM, Szymonifka JD, Mahajan A, Friedmann AM, Yong Yeap B, Goebel CP, et al. Preliminary results of a phase II trial of proton radiotherapy for pediatric rhabdomyosarcoma. J Clin Oncol. 2014;32:3762–70. doi:10.1200/JCO.2014.56.1548.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Paller AS, Hawk JL, Honig P, Giam YC, Hoath S, Mack MC, et al. New insights about infant and toddler skin: implications for sun protection. Pediatrics. 2011;128:92–102. doi:10.1542/peds.2010-1079.

    Article  PubMed  Google Scholar 

  9. Liang L, Chinnathambi S, Stern M, Tomanek-Chalkley A, Manuel TD, Bickenbach JR. As epidermal stem cells age they do not substantially change their characteristics. J Investig Dermatol Symp Proc. 2004;9:229–37. doi:10.1111/j.1087-0024.2004.09309.x.

    Article  CAS  PubMed  Google Scholar 

  10. Stamatas GN, Nikolovski J, Luedtke MA, Kollias N, Wiegand BC. Infant skin microstructure assessed in vivo differs from adult skin in organization and at the cellular level. Pediatr Dermatol. 2010;27:125–31. doi:10.1111/j.1525-1470.2009.00973.x.

    Article  PubMed  Google Scholar 

  11. Fluhr JW, Darlenski R, Taieb A, Hachem JP, Baudouin C, Msika P, et al. Functional skin adaptation in infancy—almost complete but not fully competent. Exp Dermatol. 2010;19:483–92. doi:10.1111/j.1600-0625.2009.01023.x.

    Article  PubMed  Google Scholar 

  12. Nikolovski J, Stamatas GN, Kollias N, Wiegand BC. Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J Invest Dermatol. 2008;128:1728–36. doi:10.1038/sj.jid.5701239.

    Article  CAS  PubMed  Google Scholar 

  13. Bootun R. Effects of immunosuppressive therapy on wound healing. Int Wound J. 2013;10:98–104. doi:10.1111/j.1742-481X.2012.00950.x.

    Article  PubMed  Google Scholar 

  14. Chan RJ, Webster J, Chung B, Marquart L, Ahmed M, Garantziotis S. Prevention and treatment of acute radiation-induced skin reactions: a systematic review and meta-analysis of randomized controlled trials. BMC Cancer. 2014;14:53. doi:10.1186/1471-2407-14-53.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Glover D, Harmer V. Radiotherapy-induced skin reactions: assessment and management. Br J Nurs. 2014;23:S28, S30–5. doi:10.12968/bjon.2014.23.Sup2.S28

    Google Scholar 

  16. Stamatas GN, Nikolovski J, Mack MC, Kollias N. Infant skin physiology and development during the first years of life: a review of recent findings based on in vivo studies. Int J Cosmet Sci. 2011;33:17–24. doi:10.1111/j.1468-2494.2010.00611.x.

    Article  CAS  PubMed  Google Scholar 

  17. King A, Stellar JJ, Blevins A, Shah KN. Dressings and products in pediatric wound care. Adv Wound Care (New Rochelle). 2014;3:324–34. doi:10.1089/wound.2013.0477.

    Article  Google Scholar 

Download references

Acknowledgment

The editors and authors thank Leanne J. Parsons, RN, MSN for her assistance with obtaining the photos for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve E. Braunstein MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haas-Kogan, D.A., Braunstein, S.E., Yuen, F., Tsang, L. (2016). Pediatrics. In: Fowble, B., Yom, S., Yuen, F., Arron, S. (eds) Skin Care in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-31460-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31460-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31458-7

  • Online ISBN: 978-3-319-31460-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics