Skip to main content

A Preparation Theorem for a Class of Non-differentiable Functions with an Application to Hilbert’s 16th Problem

  • Conference paper
  • First Online:
Mathematical Sciences with Multidisciplinary Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 157))

  • 877 Accesses

Abstract

We consider a class of unfoldings of quasi-regular functions. We assume that such perturbations have asymptotic developments which depend on many unfoldings of the logarithm function. We prove a preparation theorem for such functions; namely, they are “conjugated” to a finite principal part via a “pseudo-isomorphism”. This finite principal part is polynomial in the phase variable and these unfoldings of the logarithm function. As an application there exists a uniform bound in the parameter of the numbers of zeros of such class of non-differentiable functions. A finiteness result of the number of the limit cycles bifurcating from a perturbed hyperbolic polycycle is obtained too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dumortier, F., El Morsalani, M., Rousseau, C.: Hilbert’s 16th problem of quadratic systems and cyclicity of elementary graphics. Nonlinearity 9, 1209–1261 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. El Morsalani, M.: Bifurcations de polycycles infinis pour les champs de vecteurs polynomiaux. Ann. Fac. Sci. Toulouse 3, 387–410 (1994)

    Article  MathSciNet  Google Scholar 

  3. El Morsalani, M., Mourtada, A., Roussarie, R.: Quasi-regularity property for unfolding of hyperbolic polycycles. Astérisque 220, 303–326 (1994)

    MATH  Google Scholar 

  4. Françoise, J.P., Pugh, C.C.: Keeping track of limit cycles. J. Differ. Equ. 65, 139–157 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hilbert, D.: Mathematische probleme (lecture). In: The Second International Congress of Mathematicians Paris 1900, Nach. Ges. Wiiss. Gottingen, Math.-Phys. KI, 1900, pp. 253–297; Mathematical developments arising from Hilbert’s problems. In: F. Browder (ed.) Proceeding of Symposium in Pure Mathematics, vol. 28, pp. 50–51. AMS, Providence, RI (1976)

    Google Scholar 

  6. Ilyashenko, Yu.: Limit cycles of polynomial vector fields with non-degenerate singular points in the real plane. Funct. Anal. Appl. 18, 199–209 (1985)

    Article  MathSciNet  Google Scholar 

  7. Ilyashenko, Yu., Yakovenko, Yu.: Finitely smooth normal forms for local diffeomorphisms and vector fields. Russ. Math. Surv. 46, 1–43 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ilyashenko, Yu., Yakovenko, Yu.: Finite cyclicity of elementary polycycles in generic families. Am. Math. Soc. Transl. 165, 21–95 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Joyal, P.: Un théorème de préparation pour les fonctions à développement tchébychévien. Ergod. Theory Dyn. Syst. 14, 305–329 (1994)

    Article  MathSciNet  Google Scholar 

  10. Khovanskii, A.: Fewnomials. AMS, Providence, RI (1991)

    MATH  Google Scholar 

  11. Mourtada, A.: Cyclicité finie des polycycles hyperboliques des champs de vecteurs du plan: mise sous forme normale. In: Lecture Notes in Mathematics, vol. 1455, pp. 272–314. Springer, New York (1990)

    Google Scholar 

  12. Mourtada, A.: Action de dérivations irreductibles sur les algèbres quasi-régulières d’Hilbert. Preprint. arXiv: 0912.1560 v.1, 81 pp. (2009)

    Google Scholar 

  13. Moussu, R., Roche, C.: Théorème de Khovanskii et problémes de Dulac. Invent. Math. 105, 431–441 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Roussarie, R.: A note on finite cyclicity and Hilbert’s 16th problem. In: Lecture Notes in Mathematics, vol. 1331, pp. 161–168. Springer, New York (1988)

    Google Scholar 

  15. Roussarie, R.: Cyclicité finie des lacets et des points cuspidaux. Nonlinearity 2, 73–117 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tougeron, J.-C.: Algébres analytiques topologiquement noethériennes et théorie de Khovanski. Ann. Inst. Fourier tome 41, fasc. 4, 823–840 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Morsalani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Morsalani, M.E., Mourtada, A. (2016). A Preparation Theorem for a Class of Non-differentiable Functions with an Application to Hilbert’s 16th Problem. In: Toni, B. (eds) Mathematical Sciences with Multidisciplinary Applications. Springer Proceedings in Mathematics & Statistics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-31323-8_8

Download citation

Publish with us

Policies and ethics