Skip to main content

Impact of Pharmacokinetic Variability on a Mechanistic Physiological Pharmacokinetic/Pharmacodynamic Model: A Case Study of Neutrophil Development, PM00104, and Filgrastim

  • Conference paper
  • First Online:
Mathematical Sciences with Multidisciplinary Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 157))

Abstract

Interindividual variability (IIV) is considered a crucial factor for the general use of mathematical modelling in physiology. However, mechanistic models of physiological systems are commonly built for an average patient, raising the question of their applicability at the population level. Using our previously developed physiological model of neutrophil regulation, which accounts for the detailed hematopoietic mechanisms as well as the pharmacokinetics (PKs) of a chemotherapeutic agent (PM00104) and a granulostimulant (filgrastim), we incorporated the reported population pharmacokinetic (PopPK) models of each drug to investigate the impact of PK variability on fully mechanistic models. A variety of scenarios, including multiple doses of PM00104, were simulated for cohorts of 500 in silico patients to analyse the model’s predictability in terms of several pharmacological indicators, such as the time to neutrophil nadir, the value of the nadir, and the area under the effect curve. Our results indicate the robustness of our model’s predictions in all considered scenarios. Based on our findings, we conclude that for drugs with short-lived PKs in comparison with their pharmacodynamics (PDs), models that “sufficiently” account for physiological mechanisms inherently assimilate PK deviations, making the further inclusion of PK variability unnecessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, J.P.F., Abernathy, D.R.: Systems pharmacology to predict drug toxicity: integration across levels of biological organization. Annu. Rev. Pharmacol. Toxicol. 53, 451–473 (2013)

    Article  Google Scholar 

  2. Brooks, G., Langlois, G., Lei, J., Mackey, M.C.: Neutrophil dynamics after chemotherapy and G-CSF: the role of pharmacokinetics in shaping the response. J. Theor. Biol. 315, 97–109 (2012)

    Article  MathSciNet  Google Scholar 

  3. Brown, R., Delp, M., Lindstedt, S., Rhomberg, L., Beliles, R.: Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health 13, 407–484 (1997)

    Article  Google Scholar 

  4. Center for Drug Evaluation and Research (CDER): U.S. Department of Health and Human Services Food and Drug Administration. Guidance for industry. Bioavailability and bioequivalence studies submitted in NDAs or INDs—general considerations. Tech. rep. (2014)

    Google Scholar 

  5. Colijn, C., Mackey, M.C.: A mathematical model of hematopoiesis: II. Cyclical neutropenia. J. Theor. Biol. 237, 133–146 (2005)

    Article  MathSciNet  Google Scholar 

  6. Craig, M., Humphries, A., Bélair, J., Li, J., Nekka, F., Mackey, M.C.: Neutrophil dynamics during concurrent chemotherapy and g-csf administration: mathematical modelling guides dose optimisation to minimise neutropenia. J. Theor. Biol. 385, 77–89 (2015)

    Article  Google Scholar 

  7. Dancey, J., Deubelbeiss, K., Harker, L., Finch, C.: Neutrophil kinetics in man. J. Clin. Invest. 58, 705–715 (1976)

    Article  Google Scholar 

  8. Danhof, M., DeLange, E., Della Pasqua, O., Ploeger, B., Voskuyl, R.: Mechanism-based pharmacokinetic-pharmacodynamic (pkpd) modeling in translational drug research. Trends Pharmacol. Sci. 29, 186–191 (2008)

    Article  Google Scholar 

  9. Foley, C., Mackey, M.C.: Mathematical model for G-CSF administration after chemotherapy. J. Theor. Biol. 257, 27–44 (2009)

    Article  MathSciNet  Google Scholar 

  10. Foley, C., Bernard, S., Mackey, M.C.: Cost-effective G-CSF therapy strategies for cyclical neutropenia: mathematical modelling based hypotheses. J. Theor. Biol. 238, 756–763 (2006)

    Article  MathSciNet  Google Scholar 

  11. Furze, R.C., Rankin, S.M.: Neutrophil mobilization and clearance in the bone marrow. Immunology 125, 281–288 (2008)

    Article  Google Scholar 

  12. Gobburu, J., Agersø, H., Jusko, W., Ynddal, L.: Pharmacokinetic-pharmacodynamic modeling of ipamorelin, a growth hormone releasing peptide, in human volunteers. Pharm. Res. 16, 1412–1416 (1999)

    Article  Google Scholar 

  13. González-Sales, M., Valenzuela, B., Pérez-Ruixo, C., Fernández Teruel, C., Miguel-Lillo, B., Matos, A.S., et al.: Population pharmacokinetic-pharmacodynamic analysis of neutropenia in cancer patients receiving PM00104 (Zalypsis). Clin. Pharmacokinet. 51, 751–764 (2012)

    Article  Google Scholar 

  14. Krzyzanski, W., Wiczling, P., Lowe, P., Pigeolet, E., Fink, M., Berghout, A., et al.: Population modeling of filgrastim PK-PD in healthy adults following intravenous and subcutaneous administrations. J. Clin. Pharmacol. 9 (Suppl.), 101S–112S (2010)

    Google Scholar 

  15. Kuwabara, T., Kato, Y., Kobayashi, S., Suzuki, H., Sugiyama, Y.: Nonlinear pharmacokinetics of a recombinant human granulocyte colony-stimulating factor derivative (Nartograstim): species differences among rats, monkeys and humans. J. Pharmacol. Exp. Ther. 271, 1535–1543 (1994)

    Google Scholar 

  16. Layton, J.E., Hall, N.E.: The interaction of G-CSF with its receptor. Front. Biosci. 31, 177–199 (2006)

    Google Scholar 

  17. Mathworks: MATLAB 2013a. Mathworks, Natick (2013)

    Google Scholar 

  18. Pérez-Ruixo, C., Valenzuela, B., Fernández Teruel, C., González-Sales, M., Miguel-Lillo, B., Soto-Matos, A., et al.: Population pharmacokinetics of PM00104 (Zalypsis) in cancer patients. Cancer Chemother. Pharmacol. 69, 15–24 (2012)

    Article  Google Scholar 

  19. Petek, B., Jones, R.: PM00104 (Zalypsis®;): a marine derived alkylating agent. Molecules 19, 12328–12335 (2014). doi:10.3390/molecules190812328

    Article  Google Scholar 

  20. Price, T.H., Chatta, G.S., Dale, D.C.: Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood 88, 335–340 (1996)

    Google Scholar 

  21. Rankin, S.M.: The bone marrow: a site of neutrophil clearance. J. Leukoc. Biol. 88, 241–251 (2010)

    Article  Google Scholar 

  22. Scholz, M., Schirm, S., Wetzler, M., Engel, C., Loeffler, M.: Pharmacokinetic and -dynamic modelling of G-CSF derivatives in humans. Theor. Biol. Med. Model. 9, 1497–1502 (2012)

    Article  Google Scholar 

  23. Sorger, D.R., Allerheiligen, S.R.B., Abernethy, R.B., Altman, K.L.R., Brouwer, A.C., Califano, A., D’Argenio, D.Z., Iyengar, R., Jusko, W.J., Lalonde, R., Lauffenburger, D.A., Shoichet, B., Stevens, J.L., Subramaniam, S., van der Graaf, P., Vincini, P.: Quantitative and systems pharmacology in the post-genomic era: new approaches to discovering drugs and understanding therapeutic mechanisms. An NIH white paper by the QSP Workshop Group – October 2011, pp. 1–47. National Institutes of Health of the United States of America, Bethesda (2011)

    Google Scholar 

  24. Vainas, O., Ariad, S., Amir, O., Mermershtain, W., Vainstein, V., Kleiman, M., Inbar, O., Ben-Av, R., Mukherjee, A., Chan, S., Agur, Z.: Personalising docetaxel and G-CSF schedules in cancer patients by a clinically validated computational model. Br. J. Cancer 107, 814–822 (2012)

    Article  Google Scholar 

  25. Wang, B., Ludden, T.M., Cheung, E.N., Schwab, G.G., Roskos, L.K.: Population pharmacokinetic-pharmacodynamic modeling of filgrastim (r-metHuG-CSF) in healthy volunteers. J. Pharmacokinet. Pharmacodyn. 28, 321–342 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan Craig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Craig, M., González-Sales, M., Li, J., Nekka, F. (2016). Impact of Pharmacokinetic Variability on a Mechanistic Physiological Pharmacokinetic/Pharmacodynamic Model: A Case Study of Neutrophil Development, PM00104, and Filgrastim. In: Toni, B. (eds) Mathematical Sciences with Multidisciplinary Applications. Springer Proceedings in Mathematics & Statistics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-31323-8_6

Download citation

Publish with us

Policies and ethics