Skip to main content

Local Limit Cycles of Degenerate Foci in Cubic Systems

  • Conference paper
  • First Online:
Mathematical Sciences with Multidisciplinary Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 157))

Abstract

The problem of determining the stability of a weak focus in a quadratic or cubic system has been the focus of much research. Here we outline a simple but imperfect approach to the study of degenerate foci and use the method to give an example of a cubic system with four local limit cycles about a degenerate focus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi, S.-l.: A concrete example of the existence of four limit cycles for plane quadratic systems. Sci. Sin. 153–158 (1980)

    Google Scholar 

  2. Chen, L.S., Wang, M.S.: The relative position and number of limit cycles of a quadratic differential system. Acta Math. Sin. 22, 751–758 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rousseau, C.: Bifurcation methods in polynomial systems. In: Proceedings of the Nato Advanced Study Institute (Séminaire de Mathématiques Supérieures), “Bifurcations and periodic orbits of vector fields”, pp. 383–428. Kluwer Academic Publishers (1992)

    Google Scholar 

  4. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Meier, A.G.: Qualitative Theory of Second-order Dynamical Systems. Wiley, New York (1973)

    Google Scholar 

  5. Perko, L.M.: Differential Equations and Dynamical Systems. Springer, New York (1991)

    Book  MATH  Google Scholar 

  6. Blows, T.R., Lloyd, N.G.: The number of limit cycles of certain polynomial differential equations. Proc. R. Soc. Edinburgh Sect. A 98, 215–239 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andreev, A.F., Sadovskii, A.P., Tsikalyuk, V.A.: The center-focus problem for a system with homogeneous nonlinearities in the case of zero eigenvalues of the linear part. Differ. Equ. 39, 155–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blows, T.R., Rousseau, C.: Bifurcations at infinity in polynomial vector fields. J. Differ. Equ. 104, 215–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sadovskii, A.P.: Solution of the center-focus problem for some systems of nonlinear oscillations. Diff. Uravn. 14, 268–269 (1978)

    MathSciNet  Google Scholar 

  10. Rousseau, C., Zhu, H.: PP-graphics with a nilpotent elliptic singularity in quadratic systems and Hilbert’s 16th problem. J. Differ. Equ. 196, 169–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence R. Blows .

Editor information

Editors and Affiliations

Appendix: Mathematica 8

Appendix: Mathematica 8

Mathematica was used interactively to produce the results in Sect. 2.3. Firstly the base functions are put in place:

$$ \mathrm{P}2=cx\hat{\mkern6mu} 2+Dxy+F\hat{\mkern6mu} 2\vspace*{-8pt} $$
$$ \mathrm{Q}2=Axy+By\hat{\mkern6mu} 2\vspace*{-8pt} $$
$$ \mathrm{P}3=Nx\hat{\mkern6mu} 2y+Qxy\hat{\mkern6mu} 2+Ry\hat{\mkern6mu} 3\vspace*{-8pt} $$
$$ \mathrm{Q}3=-x\hat{\mkern6mu} 3+Kx\hat{\mkern6mu} 2y+Lxy\hat{\mkern6mu} 2+ My\hat{\mkern6mu} 3\vspace*{-8pt} $$
$$ \mathrm{V}2=1/2y\hat{\mkern6mu} 2\vspace*{-8pt} $$
$$ \mathrm{V}3=-\mathrm{Integrate}\left[\mathrm{Q}2,x\right] $$

After this each iteration of the algorithm has a sequence of similar steps. The first set is as follows:

$$ T4=-D\left[\mathrm{V}3,x\right]\mathrm{P}2-D\left[\mathrm{V}3,y\right]\mathrm{Q}2-D\left[\mathrm{V}2,x\right]\mathrm{P}3-D\left[\mathrm{V}2,y\right]\mathrm{Q}3\vspace*{-8pt} $$
$$ \mathrm{Collect}\left[\%,\left\{x,y\right\}\right]\vspace*{-8pt} $$
$$ \mathrm{X}4=\mathrm{Coefficient}\left[\%,x\hat{\mkern6mu} 4\right]\vspace*{-8pt} $$
$$ \mathrm{V}5=\mathrm{Simplify}\left[\left(\mathrm{T}4-\mathrm{X}4\ x\hat{\mkern6mu} 4\right)/y\right] $$

Each X terms give us a focal value η, and the V terms give us the homogeneous pieces of the Liapunov function that we are constructing. We continue through as many of these steps as is necessary.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Blows, T.R. (2016). Local Limit Cycles of Degenerate Foci in Cubic Systems. In: Toni, B. (eds) Mathematical Sciences with Multidisciplinary Applications. Springer Proceedings in Mathematics & Statistics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-31323-8_2

Download citation

Publish with us

Policies and ethics