Skip to main content

Traveling Waves Impulses of FitzHugh Model with Diffusion and Cross-Diffusion

  • Conference paper
  • First Online:
Mathematical Sciences with Multidisciplinary Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 157))

  • 918 Accesses

Abstract

The FitzHugh equations have been used as a caricature of the Hodgkin–Huxley equations of neuron firing and to capture, qualitatively, the general properties of an excitable membrane. The spatial propagation of neuron firing due to diffusion of the current potential was described by the FitzHugh–Nagumo model. Assuming that the spatial propagation of neuron firing is caused by not diffusion but cross-diffusion connection between the potential and recovery variables the cross-diffusion version of the FitzHugh model gives rise to the typical fast traveling wave solutions characteristic to the FitzHugh model, and additionally gives rise to the slow traveling wave solutions exhibited in the diffusion FitzHugh–Nagumo equations (Berezovskaya et al., Math Biosci Eng 5:239–260, 2008).

In this paper the FitzHugh model with both diffusion and cross-diffusion terms is studied; it is shown that this new version of spatial FitzHugh model gives rise to fast and slow traveling impulses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sherwood, L.: Human Physiology: From Cells to Systems, 4th edn. Brooks and Cole, Belmont, CA (2001)

    Google Scholar 

  2. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  3. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  4. FitzHugh, R.: Mathematical models of excitation and propagation in nerve. In: Schwan, H.P. (ed.) Biological Engineering. McGraw-Hill, New York (1969)

    Google Scholar 

  5. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  6. Berezovskaya, F., Karev, G.: Bifurcation approach to analysis of travelling waves in some Taxis–Cross-Diffusion models. Math. Model. Nath. Phenom. 8(3), 133–153 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Evans, J., Fenichel, N., Feroe, J.: Double impulse solutions in nerve axon equations. SIAM J. Appl. Math. 42, 219–234 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guckenheimer, J., Krauskopf, B., Osinga, H.M., Sanstede, B.: Invariant manifolds and global bifurcations. CHAOS 25, 097604 (2015)

    Article  Google Scholar 

  9. Hastings, S.P.: On the existence of homoclinic and periodic orbits for the FitzHugh-Nagumo equations. Quart. J. Math. (Oxford) 27, 123–134 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ieda, M., Mimira, M., Ninomia, H.: Diffusion, cross-diffusion and competitive interaction. J. Math. Biol. 53, 617–641 (2006)

    Article  MathSciNet  Google Scholar 

  11. Khibnik, A., Krauskopf, B., Rousseau, C.: Global study of a family of cubic Lienard equations. Nonlinearity 11, 1505–1519 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kostova, T., Ravindran, R., Schonbek, M.: FitzHugh-Nagumo revisited: types of bifurcations, periodical forcing and stability regions by a Lyapunov functional. Int. J. Bifurcation Chaos 14, 913–925 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuznetsov, Y.: Elements of Applied Bifurcation Theory. Applied Mathematics Sciences. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  14. Volokitin, E.P., Treskov, S.A.: Parameter portrait of FitzHugh system. Math. Model. 6(12), 65–78 (1994) (in Russian)

    MathSciNet  MATH  Google Scholar 

  15. Volpert, A.I., Volpert, V.A., Volpert, V.A.: Travelling Wave Solutions of Parabolic Systems. AMS, Providence, RI (1994)

    MATH  Google Scholar 

  16. Almirantis, Y., Papageorgiou, S.: Cross-diffusion effects on chemical and biological pattern formation. J. Theor. Biol. 151, 289–311 (1991)

    Article  Google Scholar 

  17. Berezovskaya, F., Camacho, E., Wirkus, S., Karev, G.: Traveling wave solutions of FitzHugh model with cross-diffusion. Math. Biosci. Eng. 5(2), 239–260 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Berezovskaya, F.S., Karev, G.P.: Bifurcations of traveling waves in population models with taxis. Physics-Uspekhi 169(9), 1011–1024 (1999)

    MATH  Google Scholar 

  19. Berezovskaya F., Novozhilov A., Karev G.: Pure cross-diffusion models: implications for traveling wave solutions. Dynam. Contin. Discret. Impulsive Syst. (Ser. A) 16(S1), 141–146 (2009)

    Google Scholar 

  20. Biktashev, V., Tsyganov, M.: Solitary waves in excitable systems with cross-diffusion. Proc. R. Soc. A 461, 3711–3730 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuznetsov, Y., Antonovsky, M., Biktashev, V., Aponina, E.: A cross-diffusion model of forest boundary dynamics. J. Math. Biol. 32, 219–232 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sherratt, J.: Travelling wave solutions of a mathematical model for tumor encapsulation. SIAM J. Appl. Math. 60(2), 392–407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tsyganov, M.A., Biktashev, V.N., Brindley, J., Holden, A.V., Ivanitskii, G.R.: Waves in systems with cross-diffusion as a new class of nonlinear waves. Physics-Uspekhi 177(3), 275–300 (2007)

    Google Scholar 

  24. Zemskov, E.P., Epstein, I.R., Muntean, A.: Oscillatory pulses in FitzHugh-Nagumo type systems with cross-diffusion. Math. Med. Biol. 28(2), 217–226 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Verzi, W., Rheuben, M.B., Baer, S.M.: Impact of time-dependent changes in spine density and spine change on the input–output properties of a dendritic branch: a computational study. J. Neurophysiol. 93, 2073–2089 (2005)

    Article  Google Scholar 

  26. Highfield R.: The brains teasing chemical cocktail that gets us drunk. UK News, Electronic Telegraph, Issue 582 (1996)

    Google Scholar 

  27. Hoppensteadt, F.: Singular perturbations on the infinite interval. Trans. Amer. Math. Soc. 123, 521–535 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tikhonov, N.: Systems of differential equations containing small parameters multiplying the derivatives. Matematicheskii sbornik 31, 575–586 (1952)

    Google Scholar 

  29. Dangelmayr, G., Guckenheimer, J.: On a four parameter family of planar vector fields. Arch. Ration. Mech. Anal. 97, 321–352 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dumortier, F., Rossarie, R., Sotomayor, J.: Bifurcations of planar vector fields. Lect. Notes Math. 1480, 1–164 (1991)

    Article  MathSciNet  Google Scholar 

  31. Wiggins, S.: Introduction to Applied Non-Linear Dynamical Systems and Chaos. Springer, New York/Berlin/Heidelberg (1990)

    Book  MATH  Google Scholar 

  32. Ni, W.-M.: Diffusion, cross-diffusion and their spike-layer steady states. Not. Am. Math. Soc. 45(1), 9–18 (1998)

    MathSciNet  MATH  Google Scholar 

  33. Murray, J.D.: Mathematical Biology. Springer, New York (1993)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faina Berezovskaya .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1.1 Lienard Form of the FitzHugh Model andItsWaveSystem

Through the change of variables

$$ \begin{aligned}[b] &\left(P,Q\right)\to \left(U,V\right):U=Q+{k}_2,\ V={F}_2\left(P,Q\right) \equiv {k}_1P - Q - {k}_2,\\ &\quad\left(P=\left(U+V\right)/{k}_1,\;Q=U-{k}_2,\;{k}_1\ne 0\right)\end{aligned} $$
(1.9)

the local model (1.1) is transformed to the generalized Lienard form:

$$ \begin{aligned}[b]{U}_t&=V,{} e{V}_t=\left(U+V\right)/{k}_1-{\left(U+V\right)}^3/{k_1}^3\\ &\quad+{k}_2-U\equiv f(U) + V\left({g}_1(U)+VG(U)\right)\equiv \varPhi \left(U,V\right),\end{aligned} $$
(1.10)

Where

$$ \begin{array}{l}f(u)=-{u}^3/{k}_1^2 + u\left(1 - {k}_1\right) + {k}_1{k}_2,\\ {}{g}_1(u) = \left(1-e\right)-3{u}^2/{k}_1^2, \\ {}G\left(u,v\right) = -\left(3u+v\right)/{k}_1^2\end{array} $$
(1.11)

Model (1.2) after transformation (1.10) reads

$$ \begin{array}{l}{U}_t=V,\\ {}e{V}_t=\varPhi \left(U,V\right)+{D}_P{V}_{xx}+\left({D}_P+D{}_Qk_1\right){U}_{xx}\end{array} $$
(1.12)

Model (1.3) after transformation (1.10) reads

$$ \begin{array}{l}{U}_t=V,\\ {}e{V}_t=\varPhi \left(U,V\right)+{D}_Q{k}_1{U}_{xx}\end{array} $$
(1.13)

A traveling wave solution of systems (1.12) and (1.13) is defined as a pair of bounded functions

$$ U\left(x,t\right) = U\left(x+Ct\right) \equiv u\left(\xi \right),\kern0.61em V\left(x,t\right) = V\left(x+Ct\right) \equiv v\left(\xi \right), $$

where \( C>0 \) is a velocity of propagation.

Let’s now replace the capital letters in (1.9) with small letters, reduce p and q via

\( p=\left(u+v\right)/{k}_1,\kern0.36em q=u-{k}_2,\kern0.24em {k}_1\ne 0 \).

Take into the consideration that \( {u}_t=C{u}_{\xi },\kern0.24em {u}_x={u}_{\xi };\;{v}_t=C{v}_{\xi },\kern0.24em {v}_x={v}_{\xi };\kern0.36em {u}_{xx}={u}_{\xi \xi }={v}_{\xi }/C \) and put \( w={v}_{\xi },{w}_{\xi }={v}_{\xi \xi } \) we get the wave system of system (1.12) in the form

$$ \begin{array}{rcl}{u}_{\xi }&=&v/C\\ {}{v}_{\xi }&=&w\\ {}{D}_P{w}_{\xi }&=&(eC-({D}_P+{D}_Q{k}_1)/C)w-\varPhi (u,v)\end{array} $$
(1.14)

where \( \varPhi \left(U,V\right)=f(U) + V\left({g}_1(U)+VG\left(U,V\right)\right) \) and functions f(u), g 1(u) , G(u, v) are given by (1.11).

The wave system of (1.13) takes the form

$$ \begin{array}{l}{u}_{\xi }=v/C,\\ {}\left(eC-{D}_Q{k}_1\right)/C\Big){v}_{\xi }=\varPhi \left(u,v\right)\end{array} $$
(1.15)

System (1.15) contains the factor \( 1/\alpha \equiv \left(eC-{D}_Q{k}_1\right)/C\Big) \) which we assumed to be non-zero.

Behaviors of system (1.15) depend on the sign of parameter α. For \( \alpha >0 \) there exists a parameter domain containing point \( M\left(e=1,{k}_1=0,{k}_2=1\right) \), where the vector field defined by system (1.15) is topologically orbitally equivalent to those defined by local system (1.1). It realizes the bifurcation of co-dimension 4 with symmetry (“spiral case”) [11]. For \( \alpha <0 \) parameter point \( M\left(e=1,{k}_1=0,{k}_2=1\right) \) is also the point that corresponds to the bifurcation of co-dimension four with symmetry but as a “saddle case.” So, behaviors of system (1.15) for \( \alpha >0 \) are different from those for \( \alpha <0 \) (see details in [17]).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Berezovskaya, F. (2016). Traveling Waves Impulses of FitzHugh Model with Diffusion and Cross-Diffusion. In: Toni, B. (eds) Mathematical Sciences with Multidisciplinary Applications. Springer Proceedings in Mathematics & Statistics, vol 157. Springer, Cham. https://doi.org/10.1007/978-3-319-31323-8_1

Download citation

Publish with us

Policies and ethics