Skip to main content

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 111))

Abstract

In this paper a brief historical survey of the development of quadrature rules with multiple nodes and the maximal algebraic degree of exactness is given. The natural generalization of such rules are quadrature rules with multiple nodes and the maximal degree of exactness in some functional spaces that are different from the space of algebraic polynomial. For that purpose we present a generalized quadrature rules considered by Ghizzeti and Ossicini (Quadrature Formulae, Academie, Berlin, 1970) and apply their ideas in order to obtain quadrature rules with multiple nodes and the maximal trigonometric degree of exactness. Such quadrature rules are characterized by the so-called s- and \(\sigma\)-orthogonal trigonometric polynomials. Numerical method for constructing such quadrature rules is given, as well as a numerical example to illustrate the obtained theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bojanov, B.D.: Oscillating polynomials of least L 1-norm. In: Hämmerlin, G. (ed.) Numerical Integration. ISNM, vol. 57, pp. 25–33. Birkhäuser, Basel (1982)

    Chapter  Google Scholar 

  2. Chakalov, L.: Über eine allgemeine Quadraturformel. C.R. Acad. Bulg. Sci. 1, 9–12 (1948)

    Google Scholar 

  3. Chakalov, L.: Formules générales de quadrature mécanique du type de Gauss. Colloq. Math. 5, 69–73 (1957)

    MathSciNet  Google Scholar 

  4. Chakalov, L.: General quadrature formulae of Gaussian type. Bulgar. Akad. Nauk Izv. Mat. Inst. 1, 67–84 (1954) (Bulgarian) [English transl. East J. Approx. 1, 261–276 (1995)]

    Google Scholar 

  5. Christoffel, E.B.: Über die Gaußische Quadratur und eine Verallgemeinerung derselben. J. Reine Angew. Math. 55, 61–82 (1858) [Also in Ges. Math. Abhandlungen I, pp. 42–50.]

    Google Scholar 

  6. Cruz–Barroso, R., Darius, L., Gonzáles–Vera, P., Njåstad, O.: Quadrature rules for periodic integrands. Bi–orthogonality and para–orthogonality. Ann. Math. et Informancae. 32, 5–44 (2005)

    Google Scholar 

  7. Cruz-Barroso, R., Gonzáles–Vera, P., Njåstad, O.: On bi-orthogonal systems of trigonometric functions and quadrature formulas for periodic integrands. Numer. Algor. 44(4), 309–333 (2007)

    Google Scholar 

  8. Cvetković, A.S., Milovanović, G.V.: The mathematica package “OrthogonalPolynomials”. Facta Univ. Ser. Math. Inform. 19, 17–36 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Cvetković, A.S., Stanić, M.P.: Trigonometric orthogonal systems. In: Gautschi, W., Mastroianni, G., Rassias, Th.M. (eds.) Approximation and Computation – In Honor of Gradimir V. Milovanović. Springer Optimization and Its Applications, vol. 42, pp. 103–116. Springer, Berlin–Heidelberg–New York (2011)

    Google Scholar 

  10. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin, Heildeberg (1993)

    Book  MATH  Google Scholar 

  11. Dryanov, D.P.: Quadrature formulae with free nodes for periodic functions. Numer. Math. 67, 441–464 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, J., Han, H., Jin, G.: On trigonometric and paratrigonometric Hermite interpolation. J. Approx. Theory 131, 74–99 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Engels, H.: Numerical Quadrature and Qubature. Academic, London (1980)

    MATH  Google Scholar 

  14. Gauss, C.F.: Methodus nova integralium valores per approximationem inveniendi. Commentationes Societatis Regiae Scientarium Göttingensis Recentiores 3, 39–76 (1814) [Also in Werke III, pp. 163–196.]

    Google Scholar 

  15. Gautschi, W.: A survey of Gauss–Christoffel quadrature formulae. In: Butzer, P.L., Fehér, F., Christoffel, E.B. (eds.) The Influence of His Work on Mathematics and the Physical Sciences, pp. 72–147. Birkhäuser, Basel (1981)

    Google Scholar 

  16. Gautschi, W.: Orthogonal polynomials: applications and computation. Acta Numer. 5, 45–119 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gautschi, W., Milovanović, G.V.: S-orthogonality and construction of Gauss–Turán-type quadrature formulae. J. Comput. Appl. Math. 86, 205–218 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ghizzeti, A., Ossicini, A.: Quadrature Formulae. Academie, Berlin (1970)

    Book  Google Scholar 

  19. Ghizzetti, A., Ossicini, A.: Sull’ esistenza e unicità delle formule di quadratura gaussiane. Rend. Mat. 8(6), 1–15 (1975)

    MathSciNet  MATH  Google Scholar 

  20. Golub, G.H., Kautsky, J.: Calculation of Gauss quadratures with multiple free and fixed knots. Numer. Math. 41, 147–163 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jacobi, C.G.J.: Ueber Gaußs neue Methode, die Werthe der Integrale näherungsweise zu finden. J. Reine Angew. Math. 1, 301–308 (1826)

    Article  MathSciNet  Google Scholar 

  22. Micchelli, C.A.: The fundamental theorem of algebra for monosplines with multiplicities. In: Butzer, P., Kahane, J.P., Nagy, B.Sz. (eds.) Linear Operators and Approximation. ISNM, vol. 20, pp. 372–379. Birkhäuser, Basel (1972)

    Google Scholar 

  23. Milovanović, G.V.: Construction of s–orthogonal polynomials and Turán quadrature formulae. In: Milovanović, G.V. (ed.) Numerical Methods and Approximation Theory III (Niš, 1987), pp. 311–328. University of Niš, Niš (1988)

    Google Scholar 

  24. Milovanović, G.V.: S–orthogonality and generalized Turán quadratures: construction and applications. In: Stancu, D.D., Coman, Ch., Breckner, W.W., Blaga, P. (Eds.), Approximation and Optimization (Cluj-Napoca, 1996). vol. I, pp. 91–106, Transilvania Press, Cluj-Napoca (1997)

    Google Scholar 

  25. Milovanović, G.V.: Quadrature with multiple nodes, power orthogonality, and moment–preserving spline approximation. J. Comput. Appl. Math. 127, 267–286 (2001). (Quadrature and orthogonal polynomials. In: Gautschi, W., Marcellan, F., Reichel, L. (eds.) Numerical analysis 2000, vol. V)

    Google Scholar 

  26. Milovanović, G.V.: Numerical quadratures and orthogonal polynomials. Stud. Univ. Babeş-Bolyai, Math. 56, 449–464 (2011)

    Google Scholar 

  27. Milovanović, G.V., Spalević, M.M.: Construction of Chakalov–Popoviciu’s type quadrature formulae. Rend. Circ. Mat. Palermo, Serie II, Suppl. 52, 625–636 (1998)

    Google Scholar 

  28. Milovanović, G.V., Spalević, M.M., Cvetković, A.S.: Calculation of Gaussian type quadratures with multiple nodes. Math. Comput. Model. 39, 325–347 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Milovanović, G.V., Cvetković, A.S., Stanić, M.P.: Trigonometric orthogonal systems and quadrature formulae with maximal trigonometric degree of exactness. Numerical Methods and Applications, vol. 2006. Lecture Notes in Computer Science, vol. 4310, pp. 402–409 (2007)

    Article  MATH  Google Scholar 

  30. Milovanović, G.V., Cvetković, A.S., Stanić, M.P.: Trigonometric orthogonal systems and quadrature formulae. Comput. Math. Appl. 56(11), 2915–2931 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Milovanović, G.V., Cvetković, A.S., Stanić, M.P.: Quadrature formulae with multiple nodes and a maximal trigonometric degree of exactness. Numer. Math. 112, 425–448 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mirković, B.: Theory of Measures and Integrals. Naučna knjiga, Beograd, 1990 (in Serbian)

    Google Scholar 

  33. Morelli, A., Verna, I.: Formula di quadratura in cui compaiono i valori della funzione e delle derivate con ordine massimo variabile da nodo a nodo. Rend. Circ. Mat. Palermo 18(2), 91–98 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. In: Classics in Applied Mathematics, vol. 30. SIAM, Philadelphia (2000)

    Google Scholar 

  35. Ossicini, A: Costruzione di formule di quadratura di tipo Gaussiano. Ann. Mat. Pura Appl. 72(4), 213–237 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ossicini, A., Rosati, F.: Funzioni caratteristiche nelle formule di quadratura gaussiane con nodi multipli. Boll. Un. Mat. Ital. 11(4), 224–237 (1975)

    MathSciNet  MATH  Google Scholar 

  37. Ossicini, A., Rosati, F.: Sulla convergenza dei funzionali ipergaussiani. Rend. Mat. 11(6), 97–108 (1978)

    MathSciNet  MATH  Google Scholar 

  38. Popoviciu, T.: Sur une généralisation de la formule d’intégration numérique de Gauss. Acad. R. P. Romîne Fil. Iaşi Stud. Cerc. Şti. 6, 29–57 (1955) (Romanian)

    Google Scholar 

  39. Schwartz, J.T.: Nonlinear Functional Analysis. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  40. Shi, Y.G.: A kind of extremal problem of integration on an arbitrary measure. Acta Sci. Math. (Szeged) 65, 567–575 (1999)

    Google Scholar 

  41. Shi, Y.G.: Power Orthogonal Polynomials. Nova Science Publishers, New York (2006)

    MATH  Google Scholar 

  42. Shi, Y.G., Xu, G.: Construction of \(\sigma\)-orthogonal polynomials and Gaussian quadrature formulas. Adv. Comput. Math. 27(1), 79–94 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stancu, D.D.: On a class of orthogonal polynomials and on some general quadrature formulas with minimum number of terms. Bull. Math. Soc. Sci. Math. Phys. R. P. Romîne (N.S) 1(49), 479–498 (1957)

    Google Scholar 

  44. Stancu, D.D.: On certain general numerical integration formulas. Acad. R. P. Romîne. Stud. Cerc. Mat. 9, 209–216 (1958) (Romanian)

    Google Scholar 

  45. Stancu, D.D.: Sur quelques formules générales de quadrature du type Gauss-Christoffel. Mathematica (Cluj) 1(24), 167–182 (1959)

    MathSciNet  MATH  Google Scholar 

  46. Stroud, A.H., Stancu, D.D.: Quadrature formulas with multiple Gaussian nodes. J. SIAM Numer. Anal. Ser. B 2, 129–143 (1965)

    MathSciNet  MATH  Google Scholar 

  47. Tomović, T.V., Stanić, M.P.: Quadrature rules with an even number of multiple nodes and a maximal trigonometric degree of exactness. FILOMAT 29(10), 2239–2255 (2015)

    Article  MathSciNet  Google Scholar 

  48. Turán, P.: On the theory of the mechanical quadrature. Acta Sci. Math. Szeged 12, 30–37 (1950)

    MathSciNet  MATH  Google Scholar 

  49. Turetzkii, A.H.: On quadrature rule that are exact for trigonometric polynomials. East J. Approx. 11, 337–359 (2005). (Translation in English from Uchenye Zapiski, Vypusk 1(149), Seria Math. Theory of Functions, Collection of papers, Izdatel’stvo Belgosuniversiteta imeni V.I. Lenina, Minsk (1959) 31–54)

    Google Scholar 

Download references

Acknowledgements

The authors were supported in part by the Serbian Ministry of Education, Science and Technological Development (grant number #174015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gradimir V. Milovanović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Milovanović, G.V., Stanić, M.P. (2016). Quadrature Rules with Multiple Nodes. In: Rassias, T., Gupta, V. (eds) Mathematical Analysis, Approximation Theory and Their Applications. Springer Optimization and Its Applications, vol 111. Springer, Cham. https://doi.org/10.1007/978-3-319-31281-1_19

Download citation

Publish with us

Policies and ethics