Skip to main content
  • 741 Accesses

Abstract

Ischemia, the interruption of blood perfusion of the heart, and reperfusion, the revascularization after an ischemic event, are both events that trigger certain signaling mechanisms and cellular adaptation to cardiomyocytes. Ischemia itself induces metabolic and structural changes to cardiomyocytes that are prone to reperfusion-induced stress, i.e., by inducing plasmalemmal fragility. Reperfusion restores immediately energy resources, but due to ischemia-dependent calcium overload, it generates the risk of hypercontracture. At the same time, oxidative stress further stresses postischemic cardiomyocytes. The well-described cellular changes during ischemia and subsequent reperfusion allowed researchers in the past to develop distinct protocols that reduce infarct sizes and protect at least part of non-irreversible damaged cardiomyocytes. Signaling events specifically targeted by such protocols, however, also affect subsequent wound healing processes. An optimal reperfusion strategy must therefore be directed by three different aims: (i) the reduction of infarct size to protect as much as myocardial tissue as possible; (ii) the immediate recovery of full pump function to perfuse not only the heart properly but also all other organs, i.e., the kidney; and (iii) signaling pathways must be activated that direct post-infarct remodeling into a direction that stabilizes pump function for longer time periods. In this chapter, a detailed description of ischemia-dependent, reperfusion-dependent, and postischemic adaptations of cardiomyocytes is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah Y, Kasseckert SA, Iraqi W, Said M, Shahzad T, Erdogan A, Neuhof C, Gündüz D, Schlüter KD, Tillmanns H, Piper HM, Reusch HP, Ladilov Y (2011) Interplay between Ca2+ cycling and mitochondrial permeability transition pores promotes reperfusion-induced injury of cardiac myocytes. J Cell Mol Med 15:2478–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol 291:H2067–H2074

    CAS  Google Scholar 

  • Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M (2005) Postconditioning inhibits mitochondrial permeability transition. Circulation 111:194–197

    Article  CAS  PubMed  Google Scholar 

  • Armstrong SC, Latham CA, Shivell CL, Ganote CE (2001) Ischemic loss of sarcolemmal dystrophin and spectrin: correlation with myocardial injury. J Mol Cell Cardiol 33:1165–1179

    Article  CAS  PubMed  Google Scholar 

  • Atar D, Arheden H, Berdeaux A, Bonnet JL, Carlsson M, Clemmensen P, Cuvier V, Danchin N, Dubois-Randé JL, Engblom H, Erlinge D, Firat H, Halvorsen S, Hansen HS, Hauke W, Heiberg E, Koul S, Larsen AI, Le Corvoisier P, Nordrehaug JE, Paganelli F, Pruss RM, Rousseau H, Schaller S, Sonou G, Tuseth V, Veys J, Vicaut E, Jensen SE (2015) Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results. Eur Heart J 36:112–119

    Article  PubMed  Google Scholar 

  • Balakirev MY, Khramtsov VV, Zimmer G (1997) Modulation of the mitochondrial permeability transition by nitric oxide. Eur J Biochem 246:710–718

    Article  CAS  PubMed  Google Scholar 

  • Bell RM, Yellon DM (2012) Conditioning the whole heart-not just the cardiomyocyte. J Mol Cell Cardiol 53:24–32

    Article  CAS  PubMed  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. W H Freeman, New York. ISBN-10: 0-7167-3051-0.

    Google Scholar 

  • Bernardi P, Di Lisa F (2015) The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 78:100–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birnbaum Y, Hale SL, Kloner RA (1997) Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation 96:1641–1646

    Article  CAS  PubMed  Google Scholar 

  • Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 120:172–185

    Article  CAS  PubMed  Google Scholar 

  • Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105:771–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boengler K, Ruiz-Meana M, Gent S, Ungefug E, Soetkamp D, Miro-Casas E, Cabestrero A, Fernandez-Sanz C, Semenzato M, Di Lisa F, Rohrbach S, Garcia-Dorado D, Heusch G, Schulz R (2012) Mitochondrial connexin 43 impacts on respiratory complex I activity and mitochondrial oxygen consumption. J Cell Mol Med 16:1649–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boengler K, Ungefug E, Heusch G, Leybaert L, Schulz R (2013) Connexin 43 impacts on mitochondrial potassium uptake. Front Pharmacol 4:73. doi:10.3389/fphar.2013.00073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulluck H, Hausenloy DJ (2015) Ischaemic conditioning: are we there yet? Heart 101:1067–1077

    Article  PubMed  Google Scholar 

  • Burley DS, Ferdinandy P, Baxter GF (2007) Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signaling. Br J Pharmacol 152:855–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114:524–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BH (2001) Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol 280:H2313–H2320

    CAS  Google Scholar 

  • Chen M, Won DJ, Krajewski S, Gottlieb RA (2002) Calpain and mitochondria in ischemia/reperfusion injury. J Biol Chem 277:29181–29186

    Article  CAS  PubMed  Google Scholar 

  • Chiong M, Wang ZV, Pedrozo Z, Cao DJ, Troncoso R, Ibacache M, Criollo A, Nemchenko A, Hill JA, Lavandero S (2011) Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis 2:e244. doi:10.1038/cddis.2011.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi E, Cha MJ, Hwang KC (2014) Roles of Calcium Regulating MicroRNAs in Cardiac Ischemia-Reperfusion Injury. Cells 3:899–913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clarke SJ, Khaliulin I, Das M, Parker JE, Heesom KJ, Halestrap AP (2008) Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation. Circ Res 102:1082–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa AD, Garlid KD (2008) Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT. Am J Physiol 295:H874–H882

    CAS  Google Scholar 

  • Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 97:329–336

    Article  CAS  PubMed  Google Scholar 

  • Datta K, Bellacosa A, Chan TO, Tsichlis PN (1996) Akt is a direct target of the phosphatidylinositol 3-kinase. Activation by growth factors, v-src and v-Ha-ras, in Sf9 and mammalian cells. J Biol Chem 271:30835–30839

    Article  CAS  PubMed  Google Scholar 

  • Dennis SC, Gevers W, Opie LH (1991) Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol 23(9):1077–1086

    Article  CAS  PubMed  Google Scholar 

  • DeWood MA, Spores J, Notske R, Mouser LT, Burroughs R, Golden MS, Lang HT (1980) Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 303:897–902

    Article  CAS  PubMed  Google Scholar 

  • Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    Article  CAS  PubMed  Google Scholar 

  • Eckle T, Hartmann K, Bonney S, Reithel S, Mittelbronn M, Walker LA, Lowes BD, Han J, Borchers CH, Buttrick PM, Kominsky DJ, Colgan SP, Eltzschig HK (2012) Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat Med 18:774–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R (2014) Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 66:1142–1174

    Article  CAS  PubMed  Google Scholar 

  • Fiedler J, Thum T (2013) MicroRNAs in myocardial infarction. Arterioscler Thromb Vasc Biol 33:201–205

    Article  CAS  PubMed  Google Scholar 

  • Fleet WF, Johnson TA, Graebner CA, Gettes LS (1985) Effect of serial brief ischemic episodes on extracellular K+, pH, and activation in the pig. Circulation 72:922–932

    Article  CAS  PubMed  Google Scholar 

  • Fliss H, Gattinger D (1996) Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79:949–956

    Article  CAS  PubMed  Google Scholar 

  • Frelin C, Vigne P, Lazdunski M (1985) The role of the Na+/H+ exchange system in the regulation of the internal pH in cultured cardiac cells. Eur J Biochem 149:1–4

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Dorado D, Oliveras J (1993) Myocardial oedema: a preventable cause of reperfusion injury? Cardiovasc Res 27:1555–1563

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Dorado D, Ruiz-Meana M, Padilla F, Rodriguez-Sinovas A, Mirabet M (2002) Gap junction-mediated intercellular communication in ischemic preconditioning. Cardiovasc Res 55:456–465

    Article  CAS  PubMed  Google Scholar 

  • García-Dorado D, Rodríguez-Sinovas A, Ruiz-Meana M (2004) Gap junction-mediated spread of cell injury and death during myocardial ischemia-reperfusion. Cardiovasc Res 61:386–401

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM (2012) Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res 94:168–180

    Article  CAS  PubMed  Google Scholar 

  • Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD (1996) Myocardial protection by brief ischemia in noncardiac tissue. Circulation 94:2193–2200

    Article  CAS  PubMed  Google Scholar 

  • Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halestrap AP, Richardson AP (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 78:129–141

    Article  CAS  PubMed  Google Scholar 

  • Hattori R, Maulik N, Otani H, Zhu L, Cordis G, Engelman RM, Siddiqui MA, Das DK (2001) Role of STAT3 in ischemic preconditioning. J Mol Cell Cardiol 33:1929–1936

    Article  CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest 123:92–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausenloy D, Wynne A, Duchen M, Yellon D (2004a) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109:1714–1717

    Article  CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Mocanu MM, Yellon DM (2004b). Cross-talk between the survival kinases during early reperfusion: its contribution to ischemic preconditioning. Cardiovasc Res:305–12.

    Google Scholar 

  • Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM (2005) Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 288:H971–H976

    Article  CAS  PubMed  Google Scholar 

  • Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, García-Dorado D, Di Lisa F, Schulz R, Heusch G (2005). Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586

    Google Scholar 

  • Heusch G (2013) Cardioprotection: chances and challenges of its translation to the clinic. Lancet 381:166–175

    Article  PubMed  Google Scholar 

  • Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699

    Article  CAS  PubMed  Google Scholar 

  • Heusch G, Büchert A, Feldhaus S, Schulz R (2006) No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 101:354–356

    Article  CAS  PubMed  Google Scholar 

  • Hochhauser E, Kivity S, Offen D, Maulik N, Otani H, Barhum Y, Pannet H, Shneyvays V, Shainberg A, Goldshtaub V, Tobar A, Vidne BA (2003) Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice. Am J Physiol 284:H2351–H2359

    CAS  Google Scholar 

  • Hochhauser E, Cheporko Y, Yasovich N, Pinchas L, Offen D, Barhum Y et al (2007) Bax deficiency reduces infarct size and improves long-term function after myocardial infarction. Cell Biochem Biophys 47:11–20

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez B, Heusch G, Ovize M, Van de Werf F (2015) Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 65:1454–1471

    Article  PubMed  Google Scholar 

  • Inserte J, Garcia-Dorado D (2015) The cGMP/PKG pathway as a common mediator of cardioprotection: translatability and mechanism. Br J Pharmacol 172:1996–2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inserte J, Garcia-Dorado D, Hernando V, Soler-Soler J (2005) Calpain-mediated impairment of Na+/K+-ATPase activity during early reperfusion contributes to cell death after myocardial ischemia. Circ Res 97:465–473

    Article  CAS  PubMed  Google Scholar 

  • Inserte J, Barba I, Hernando V, Garcia-Dorado D (2009) Delayed recovery of intracellular acidosis during reperfusion prevents calpain activation and determines protection in postconditioned myocardium. Cardiovasc Res 81:116–122

    Article  CAS  PubMed  Google Scholar 

  • Inserte J, Barba I, Poncelas-Nozal M, Hernando V, Agulló L, Ruiz-Meana M, Garcia-Dorado D (2011a) cGMP/PKG pathway mediates myocardial postconditioning protection in rat hearts by delaying normalization of intracellular acidosis during reperfusion. J Mol Cell Cardiol 50:903–909

    Article  CAS  PubMed  Google Scholar 

  • Inserte J, Ruiz-Meana M, Rodríguez-Sinovas A, Barba I, Garcia-Dorado D (2011b) Contribution of delayed intracellular pH recovery to ischemic postconditioning protection. Antioxid Redox Signal 14:923–939

    Article  CAS  PubMed  Google Scholar 

  • Inserte J, Hernando V, Garcia-Dorado D (2012) Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovasc Res 96:23–31

    Article  CAS  PubMed  Google Scholar 

  • Inserte J, Hernando V, Ruiz-Meana M, Poncelas-Nozal M, Fernández C, Agulló L, Sartorio C, Vilardosa U, Garcia-Dorado D (2014) Delayed phospholamban phosphorylation in post-conditioned heart favours Ca2+ normalization and contributes to protection. Cardiovasc Res 103:542–553

    Article  CAS  PubMed  Google Scholar 

  • Jennings RB (2013) Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circ Res 13:428–438

    Google Scholar 

  • Jennings RB, Reimer KA, Steenbergen C (1986). Myocardial ischemia revisited. The osmolar load, membrane damage, and reperfusion. J Mol Cell Cardiol 18:769–80

    Google Scholar 

  • Jennings RB, Reimer KA, Hill ML, Mayer SE (1981) Total ischemia in dog hearts, in vitro. 1. Comparison of high energy phosphate production, utilization, and depletion, and of adenine nucleotide catabolism in total ischemia in vitro vs. severe ischemia in vivo. Circ Res 49:892–900

    Article  CAS  PubMed  Google Scholar 

  • Jennings RB, Murry CE, Steenbergen C Jr, Reimer KA (1990) Development of cell injury in sustained acute ischemia. Circulation 82(3 Suppl):II2–II12

    Google Scholar 

  • Jordan C, Püschel B, Koob R, Drenckhahn D (1995) Identification of a binding motif for ankyrin on the alpha-subunit of Na+, K + −ATPase. J Biol Chem 270:29971–22975

    Article  CAS  PubMed  Google Scholar 

  • Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs. preconditioning. Redox Biol 2:702–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kar P, Chakraborti T, Samanta K, Chakraborti S (2009) mu-Calpain mediated cleavage of the Na+/Ca2+ exchanger in isolated mitochondria under A23187 induced Ca2+ stimulation. Arch Biochem Biophys 482:66–76

    Article  CAS  PubMed  Google Scholar 

  • Kennedy SG, Kandel ES, Cross TK, Hay N (1999) Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 19:5800–5810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Neely JR (1979) Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res 44:166–175

    Article  CAS  PubMed  Google Scholar 

  • Konstantinidis K, Whelan RS, Kitsis RN (2012) Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol 32:1552–1562

    Article  CAS  PubMed  Google Scholar 

  • Kühn H (2011) Herz-Kreislauf-System. In: Püschel GP, Kietzmann T, Doenecke D, Kühn H, Höhne W, Christ B, Koolman J (ed) Taschenlehrbuch Biochemie. Georg Thieme, Verlag

    Google Scholar 

  • Ladilov YV, Siegmund B, Piper HM (1995) Protection of reoxygenated cardiomyocytes against hypercontracture by inhibition of Na+/H+ exchange. Am J Physiol 268:H1531–H1539

    CAS  PubMed  Google Scholar 

  • Ladilov Y, Haffner S, Balser-Schäfer C, Maxeiner H, Piper HM (1999) Cardioprotective effects of KB-R7943: a novel inhibitor of the reverse mode of Na+/Ca2+ exchanger. Am J Physiol 276:H1868–H1876

    CAS  PubMed  Google Scholar 

  • Lecour S (2009) Multiple protective pathways against reperfusion injury: a SAFE path without action? J Mol Cell Cardiol 46:607–609

    Article  CAS  PubMed  Google Scholar 

  • Lecour S, Suleman N, Deuchar GA, Somers S, Lacerda L, Huisamen B, Opie LH (2005) Pharmacological preconditioning with tumor necrosis factor-alpha activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase). Circulation 112:3911–3918

    Article  CAS  PubMed  Google Scholar 

  • Lesnefsky EJ, Chen Q, Moghaddas S, Hassan MO, Tandler B, Hoppel CL (2004) Blockade of electron transport during ischemia protects cardiac mitochondria. J Biol Chem 279:47961–47967

    Article  CAS  PubMed  Google Scholar 

  • Li F, Sugishita K, Su Z, Ueda I, Barry WH (2001). Activation of connexin-43 hemichannels can elevate [Ca(2+)]i and [Na(+)]i in rabbit ventricular myocytes during metabolic inhibition. J Mol Cell Cardiol 33, 2145–2155

    Google Scholar 

  • Lim SY, Davidson SM, Mocanu MM, Yellon DM, Smith CC (2007) The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc Drugs Ther 21:467–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long Q, Yang K, Yang Q (2015) Regulation of mitochondrial ATP synthase in cardiac pathophysiology. Am J Cardiovasc Dis 5:19–32

    PubMed  PubMed Central  Google Scholar 

  • Marban E, Kusuoka H (1987) Maximal Ca2+ activated force and myofilament Ca2+ sensitivity in intact mammalian hearts. J Gen Physiol 90:609–623

    Article  CAS  PubMed  Google Scholar 

  • Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function: ten years after, and continuing. Circ Res 93:388–398

    Article  CAS  PubMed  Google Scholar 

  • Murata M, Akao M, O’Rourke B, Marban E (2001) Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res 89:891–898

    Article  CAS  PubMed  Google Scholar 

  • Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Ueda Y, Juan Y, Katsuda S, Takahashi H, Koh E (2000) Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: in vivo study. Circulation 102:572–578

    Article  CAS  PubMed  Google Scholar 

  • Oakes SA, Opferman JT, Pozzan T, Korsmeyer SJ, Scorrano L (2003) Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family members. Biochem Pharmacol 66:1335–1340

    Article  CAS  PubMed  Google Scholar 

  • Oerlemans MI, Koudstaal S, Chamuleau SA, de Kleijn DP, Doevendans PA, Sluijter JP (2013) Targeting cell death in the reperfused heart: pharmacological approaches for cardioprotection. Int J Cardiol 165:410–422

    Article  PubMed  Google Scholar 

  • Oldenburg O, Qin Q, Krieg T, Yang XM, Philipp S, Critz SD, Cohen MV, Downey JM (2004) Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am J Physiol Heart Circ Physiol 286:H468–H476

    Article  CAS  PubMed  Google Scholar 

  • Ong SB, Samangouei P, Kalkhoran SB, Hausenloy DJ (2015) The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol 78:23–34

    Article  CAS  PubMed  Google Scholar 

  • Orogo AM, Gustafsson ÅB (2013) Cell death in the myocardium: my heart won’t go on. IUBMB Life 65:651–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R, Working Group of Cellular Biology of Heart of European Society of Cardiology (2010) Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 87:406–423

    Article  CAS  PubMed  Google Scholar 

  • Pan Z, Sun X, Ren J, Li X, Gao X, Lu C, Zhang Y, Sun H, Wang Y, Wang H, Wang J, Xie L, Lu Y, Yang B (2012) miR-1 exacerbates cardiac ischemia-reperfusion injury in mouse models. PLoS One 7:e50515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, Fergusson MM, Rovira II, Allen M, Springer DA, Aponte AM, Gucek M, Balaban RS, Murphy E, Finkel T (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15:1464–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paradis AN, Gay MS, Zhang L (2014). Binucleation of cardiomyocytes: the transition from a proliferative to a terminally differentiated state. Drug Discov Today 19:602–609

    Google Scholar 

  • Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N et al (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481

    Article  CAS  PubMed  Google Scholar 

  • Piper HM, Balser C, Ladilov YV, Schäfer M, Siegmund B, Ruiz-Meana M, Garcia-Dorado D (1996) The role of Na+/H+ exchange in ischemia-reperfusion. Basic Res Cardiol 91:191–202

    Article  CAS  PubMed  Google Scholar 

  • Piper HM, García-Dorado D, Ovize M (1998) A fresh look at reperfusion injury. Cardiovasc Res 38:291–300

    Article  CAS  PubMed  Google Scholar 

  • Piper HM, Ladilov Y V, Siegmund B, Taimor G (1999) Zelluläre Ursachen des myokardialen Ischämie-Reperfusionsschadens. In: Griebenow G, Gülker H, Dominiak P, Piper HM (ed) Autonomes Nervensystem und Koronare Herzkrankheit. Novartis Pharma GmbH, Nürnberg, SBN:9783933185211, pp 21–35

    Google Scholar 

  • Piper HM, Abdallah Y, Schafer C (2004) The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res 61:365–371

    Article  CAS  PubMed  Google Scholar 

  • Piquereau J, Caffin F, Novotova M, Lemaire C, Veksler V, Garnier A, Ventura-Clapier R, Joubert F (2013) Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front Physiol 4:102. doi:10.3389/fphys.2013.00102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87:893–899

    Article  CAS  PubMed  Google Scholar 

  • Ricci JE, Muñoz-Pinedo C, Fitzgerald P, Bailly-Maitre B, Perkins GA, Yadava N, Scheffler IE, Ellisman MH, Green DR (2004). Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117:773–86

    Google Scholar 

  • Rodríguez-Sinovas A, Abdallah Y, Piper HM, Garcia-Dorado D (2007) Reperfusion injury as a therapeutic challenge in patients with acute myocardial infarction. Heart Fail Rev 12:207–216

    Article  PubMed  CAS  Google Scholar 

  • Rubtsov AM, Lopina OD (2000) Ankyrins. FEBS Lett 482:1–5

    Article  CAS  PubMed  Google Scholar 

  • Sánchez JA, Rodríguez-Sinovas A, Barba I, Miró-Casas E, Fernández-Sanz C, Ruiz-Meana M, Alburquerque-Béjar JJ, García-Dorado D (2013) Activation of RISK and SAFE pathways is not involved in the effects of Cx43 deficiency on tolerance to ischemia-reperfusion injury and preconditioning protection. Basic Res Cardiol 108:351

    Article  PubMed  CAS  Google Scholar 

  • Schlüter KD, Jakob G, Ruiz-Meana M, Garcia-Dorado D, Piper HM (1996) Protection of reoxygenated cardiomyocytes against osmotic fragility by nitric oxide donors. Am J Physiol 271:H428–H434

    PubMed  Google Scholar 

  • Schulz R, Post H, Vahlhaus C, Heusch G (1998) Ischemic preconditioning in pigs: a graded phenomenon: its relation to adenosine and bradykinin. Circulation 98:1022–1029

    Article  CAS  PubMed  Google Scholar 

  • Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G (2001) Signal transduction of ischemic preconditioning. Cardiovasc Res 52:181–198

    Article  CAS  PubMed  Google Scholar 

  • Schulz R, Boengler K, Totzeck A, Luo Y, Garcia-Dorado D, Heusch G (2007) Connexin 43 in ischemic pre- and postconditioning. Heart Fail Rev 12:261–266

    Article  CAS  PubMed  Google Scholar 

  • Schulz R, Görge PM, Görbe A, Ferdinandy P, Lampe PD, Leybaert L (2015). Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacol Ther 153:90–106.

    Google Scholar 

  • Shintani-Ishida K, Yoshida K (2011) Ischemia induces phospholamban dephosphorylation via activation of calcineurin, PKC-α, and protein phosphatase 1, thereby inducing calcium overload in reperfusion. Biochim Biophys Acta 1812:743–751

    Article  CAS  PubMed  Google Scholar 

  • Siegmund B, Zude R, Piper HM (1992) Recovery of anoxic-reoxygenated cardiomyocytes from severe Ca2+ overload. Am J Physiol 263:H1262–H1269

    CAS  PubMed  Google Scholar 

  • Siegmund B, Schlüter KD, Piper HM (1993) Calcium and the oxygen paradox. Cardiovasc Res 27:1778–1783

    Article  CAS  PubMed  Google Scholar 

  • Siegmund B, Schlack W, Ladilov YV, Balser C, Piper HM (1997) Halothane protects cardiomyocytes against reoxygenation-induced hypercontracture. Circulation 96:4372–4379

    Article  CAS  PubMed  Google Scholar 

  • Singh RB, Chohan PK, Dhalla NS, Netticadan T (2004) The sarcoplasmic reticulum proteins are targets for calpain action in the ischemic-reperfused heart. J Mol Cell Cardiol 37:101–110

    Article  CAS  PubMed  Google Scholar 

  • Sluijter JP, Condorelli G, Davidson SM, Engel FB, Ferdinandy P, Hausenloy DJ, Lecour S, Madonna R, Ovize M, Ruiz-Meana M, Schulz R, Van Laake LW, Nucleus of the European Society of Cardiology Working Group Cellular Biology of the Heart (2014) Novel therapeutic strategies for cardioprotection. Pharmacol Ther 144:60–70

    Article  CAS  PubMed  Google Scholar 

  • Smith CC, Davidson SM, Lim SY, Simpkin JC, Hothersall JS, Yellon DM (2007) Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther 21:227–233

    Article  CAS  PubMed  Google Scholar 

  • Soetkamp D, Nguyen TT, Menazza S, Hirschhäuser C, Hendgen-Cotta UB, Rassaf T, Schlüter KD, Boengler K, Murphy E, Schulz R (2014) S-nitrosation of mitochondrial connexin 43 regulates mitochondrial function. Basic Res Cardiol 109:433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steenbergen C, Murphy E, Levy L, London RE (1987a) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 60:700–707

    Article  CAS  PubMed  Google Scholar 

  • Steenbergen CJ, Hill ML, Jennings RB (1987b) Cytoskeletal damage during myocardial ischemia: changes in vinculin immunofluorescence staining during total in vitro ischemia and in canine heart. Circ Res 60:478–486

    Article  CAS  PubMed  Google Scholar 

  • Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83

    Article  CAS  PubMed  Google Scholar 

  • Sun HY, Wang NP, Kerendi F, Halkos M, Kin H, Guyton RA, Vinten-Johansen J, Zhao ZQ (2005) Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol 288:H1900–H1908

    CAS  Google Scholar 

  • Sun J, Picht E, Ginsburg KS, Bers DM, Steenbergen C, Murphy E (2006) Hypercontractile female hearts exhibit increased S-nitrosylation of the L-type Ca2+ channel alpha1 subunit and reduced ischemia/reperfusion injury. Circ Res 98:403–411Taimor G, Lorenz H, Hofstaetter B, Schlüter KD, Piper HM (1999). Induction of necrosis but not apoptosis after anoxia and reoxygenation in isolated adult cardiomyocytes of rat. Cardiovasc Res 41:147-56.

    Google Scholar 

  • Taimor G, Lorenz H, Hofstaetter B, Schlüter KD, Piper HM (1999). Induction of necrosis but not apoptosis after anoxia and reoxygenation in isolated adult cardiomyocytes of rat. Cardiovasc Res 41:147–56

    Google Scholar 

  • Tong H, Chen W, Steenbergen C, Murphy E (2000) Ischemic preconditioning activates phosphatidylinositol-3-kinase upstream of protein kinase C. Circ Res 87:309–315

    Article  CAS  PubMed  Google Scholar 

  • Tsuruta F, Masuyama N, Gotoh Y (2002) The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria. J Biol Chem 277:14040–14047

    Article  CAS  PubMed  Google Scholar 

  • Vandenberg JI, Metcalfe JC, Grace AA (1993) Mechanisms of pHi recovery after global ischemia in the perfused heart. Circ Res 72:993–1003

    Article  CAS  PubMed  Google Scholar 

  • Vinten-Johansen J, Shi W (2011). Perconditioning and postconditioning: current knowledge, knowledge gaps, barriers to adoption, and future directions. J Cardiovasc Pharmacol Ther 16:260–266

    Google Scholar 

  • Wang N, De Bock M, Decrock E, Bol M, Gadicherla A, Bultynck G, Leybaert L (2013) Connexin targeting peptides as inhibitors of voltage- and intracellular Ca2+−triggered Cx43 hemichannel opening. Neuropharmacology 75:506–516

    Article  CAS  PubMed  Google Scholar 

  • Wei GZ, Zhou JJ, Wang B, Wu F, Bi H, Wang YM et al (2007) Diastolic Ca2+ overload caused by Na+/Ca2+ exchanger during the first minutes of reperfusion results in continued myocardial stunning. Eur J Pharmacol 572:1–11

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Wang HG (2001) The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 20:7779–7786

    Article  CAS  PubMed  Google Scholar 

  • Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH (2000) Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86:692–699

    Article  CAS  PubMed  Google Scholar 

  • Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87:619–628

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol 285:H579–H588

    CAS  Google Scholar 

  • Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192:1001–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Heger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heger, J. (2016). Ischemia and Reperfusion. In: Schlüter, KD. (eds) Cardiomyocytes – Active Players in Cardiac Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-31251-4_8

Download citation

Publish with us

Policies and ethics