Skip to main content

Application of Evolutionary Algorithms for the Optimization of Genetic Regulatory Networks

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2016)

Abstract

Synthetic biology aims at reinvesting theoretical knowledge from various do-mains (biology, engineering, microelectronics) for the development of new bio-logical functions. Concerning the design of such functions, the classical trial-error approach is expensive and time consuming. Computer-aided design is therefore of key interest in this field. As for other domains, such as microelectronics or robotics, evolutionary algo-rithms can be used to this end. This article is a first step in this direction: it describes the optimization of an existing artificial gene regulatory network using evolutionary algorithms. Evolutionary algorithms successfully find a good set of parameters (the simu-lated response of the system which fits at 99 % the expected response) in about 200 s (corresponding to 5000 generations) on a standard computer. This is the proof of concept of our approach. Moreover, results analysis allows the biologist not only to save time during the design process but also to study the specificity of a system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ro, D.K., Paradise, E.M., Ouellet, M., Fisher, K.J., Newman, K.L., Ndungu, J.M., Ho, K.A., Eachus, R.A., Ham, T.S., Kirby, J., et al.: Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086), 940–943 (2006)

    Article  Google Scholar 

  2. Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R., Benenson, Y.: Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333(6047), 1307–1311 (2011)

    Article  Google Scholar 

  3. Levskaya, A., Chevalier, A.A., Tabor, J.J., Simpson, Z.B., Lavery, L.A., Levy, M., Davidson, E.A., Scouras, A., Ellington, A.D., Marcotte, E.M., et al.: Synthetic biology: engineering escherichia coli to see light. Nature 438(7067), 441–442 (2005)

    Article  Google Scholar 

  4. Peralta-Yahya, P.P., Zhang, F., Del Cardayre, S.B., Keasling, J.D.: Microbial engineering for the production of advanced biofuels. Nature 488(7411), 320–328 (2012)

    Article  Google Scholar 

  5. Beal, J., Weiss, R., Densmore, D., Adler, A., Appleton, E., Babb, J., Bhatia, S., Davidsohn, N., Haddock, T., Loyall, J., et al.: An end-to-end workflow for engineering of biological networks from high-level specifications. ACS Synth. Biol. 1(8), 317–331 (2012)

    Article  Google Scholar 

  6. Marchisio, M.A. (ed.): Computational Methods in Synthetic Biology, Methods in Molecular Biology, vol. 1244. Springer, New York (2015)

    Google Scholar 

  7. Myers, C.J.: Computational synthetic biology: progress and the road ahead. IEEE Trans. Multi-scale Comput. Syst. 1(1), 19–32 (2015)

    Article  Google Scholar 

  8. Bhatia, S., Roehner, N., Silva, R., Voigt, C.A., Densmore, D.: A framework for genetic logic synthesis 103(11) (2015)

    Google Scholar 

  9. Icube laboratory - genetic netowrk design automation (2015). http://geneda.fr

  10. Madec, M., Pecheux, F., Gendrault, Y., Bauer, L., Haiech, J., Lallement, C.: EDA inspired open-source framework for synthetic biology. In: 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 374–377. IEEE (2013)

    Google Scholar 

  11. Bilitchenko, L., Liu, A., Cheung, S., Weeding, E., Xia, B., Leguia, M., Anderson, J.C., Densmore, D.: Eugene-a domain specific language for specifying and constraining synthetic biological parts, devices, and systems. PloS ONE 6(4), e18882 (2011)

    Article  Google Scholar 

  12. Yaman, F., Bhatia, S., Adler, A., Densmore, D., Beal, J.: Automated selection of synthetic biology parts for genetic regulatory networks. ACS Synth. Biol. 1(8), 332–344 (2012)

    Article  Google Scholar 

  13. Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H., Weiss, R.: A synthetic multicellular system for programmed pattern formation. Nature 434(7037), 1130–1134 (2005)

    Article  Google Scholar 

  14. Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks—i. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull. Math. Biol. 57(2), 247–276 (1995)

    Article  MATH  Google Scholar 

  15. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: extending thomas’ asynchronous logical approach with temporal logic. J. Theor. Biol. 229(3), 339–347 (2004)

    Article  MathSciNet  Google Scholar 

  16. Gendrault, Y., Madec, M., Lemaire, M., Lallement, C., Haiech, J.: Automated design of artificial biological functions based on fuzzy logic. In: 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 85–88. IEEE (2014)

    Google Scholar 

  17. Doboli, A., Vemuri, R.: Exploration-based high-level synthesis of linear analog systems operating at low/medium frequencies. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 22(11), 1556–1568 (2003)

    Article  Google Scholar 

  18. Lohn, J.D., Colombano, S.P.: Automated analog circuit synthesis using a linear representation. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 125–133. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  19. Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A., Dunlap, F.: Automated synthesis of analog electrical circuits by means of genetic programming. IEEE Trans. Evol. Comput. 1(2), 109–128 (1997)

    Article  Google Scholar 

  20. Koza, J.R.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer Academic Publishers, Norwell (2003)

    MATH  Google Scholar 

  21. Maitre, O., Baumes, L.A., Lachiche, N., Corma, A., Collet, P.: Coarse grain parallelization of evolutionary algorithms on GPGPU cards with EASEA. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1403–1410. ACM (2009)

    Google Scholar 

  22. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata. In: Whitley, L.D. (ed.) FOGA, pp. 187–202. Morgan Kaufmann, San Mateo (1992)

    Google Scholar 

  23. Deb, K., Agrawal, R.W.: Simulated binary crossover for continuous search space. Complex Syst. 9, 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  24. Schwefel, H.P.: Adaptive Mechanismen in der biologischen Evolution und ihr Einfluß auf die Evolutionsgeschwindigkeit

    Google Scholar 

  25. Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Take it EASEA. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 891–901. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  26. Collet, P., Krüger, F., Maitre, O.: Automatic parallelization of EC on GPGPUs and clusters of GPGPU machines with EASEA and EASEA-CLOUD. In: Tsutsui, S., Collet, P. (eds.) Massively Parallel Evolutionary Computation on GPGPUs, pp. 15–34. Springer, Heidelberg (2013)

    Google Scholar 

  27. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  28. Ehrlich, P., Raven, P.: Butterflies and plants: a study in coevolution. Evolution 18(4), 586–608 (1964)

    Article  Google Scholar 

  29. Goh, C.S., Bogan, A.A., Joachimiak, M., Walther, D., Cohen, F.E.: Co-evolution of proteins with their interaction partners. J. Mol. Biol. 299(2), 283–293 (2000)

    Article  Google Scholar 

  30. Ausländer, S., Ausländer, D., Müller, M., Wieland, M., Fussenegger, M.: Programmable single-cell mammalian biocomputers. Nature 487(7405), 123–127 (2012)

    Google Scholar 

  31. Registry of standard biological parts. http://parts.igem.org/Main_Page

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elise Rosati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rosati, E. et al. (2016). Application of Evolutionary Algorithms for the Optimization of Genetic Regulatory Networks. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9597. Springer, Cham. https://doi.org/10.1007/978-3-319-31204-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31204-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31203-3

  • Online ISBN: 978-3-319-31204-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics