Skip to main content

Sensory-Motor Anticipation and Local Information Fusion for Reliable Humanoid Approach

  • Conference paper
  • First Online:
New Trends in Medical and Service Robots

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 39))

Abstract

The possibility of developing increasingly sophisticated robots, and the availability of cloud-connected resources, have boosted the interest in the study of real world applications of service robotics. However, in order to operate under natural or less structured conditions, and given the information processing bottleneck and the reactivity required for a secure execution of the task, it is desirable that the agent can exploit more efficiently the local information available, so that being more autonomous, and relying less on remote computation. This study explores a strategy for obtaining reliable approach tasks. It considers the anticipation of perception, by taking into account the statistical regularities and the information redundancies induced in the sensory-motor coupling. From an initial perception of the object assisted by remote computation, contextual features are defined for capturing bodily sensations emerging in the task. The observations based on proprioceptive and visual data are fused in a Bayesian network, which is in charge of assessing the saliency during the object approach, thus constituting a local discriminative processing of the object. The strategy proposed reduces dependency on context-free models of behavior, while providing an estimate on the degree of confidence in the progress of the task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, M.: Embodied cognition: a field guide. Artif. Intell. 149(1), 91–130 (2003). doi:10.1016/S0004-3702(03)00054-7

    Google Scholar 

  2. Brooks, R.A.: Cambrian Intelligence: The Early History of the New AI, 1st edn. A Bradford Book, Cambridge (1999)

    MATH  Google Scholar 

  3. Chame, H.F., Chevallereau, C.: Embodied localization in visually-guided walk of humanoid robots. ICINCO 2, 165–174 (2014)

    Google Scholar 

  4. Chaumette, F., Hutchinson, S.: Visual servo control, part i: basic approaches. IEEE Robot. Autom. Mag. 13, 82–90 (2006)

    Article  Google Scholar 

  5. Comport, A., Marchand, E., Pressigout, M., Chaumette, F.: Real-time markerless tracking for augmented reality: the virtual visual servoing framework. IEEE Trans. Visual Comput. Graphics B 12(4), 615–628 (2006). doi:10.1109/TVCG.2006.78

    Google Scholar 

  6. Corke, P.I.: Robotics, Vision and Control: Fundamental Algorithms in Matlab. Springer (2011)

    Google Scholar 

  7. Dune, C., Herdt, A., March, E., Stasse, O., Wieber, P.b., Yoshida, E.: Vision based control for humanoid robots. In: IROS Workshop on Visual Control of Mobile Robots (ViCoMoR) (2011)

    Google Scholar 

  8. Ertel, W.: Introduction to Artificial Intelligence. Springer, London (2011)

    Book  MATH  Google Scholar 

  9. Hoffmann, M., Pfeifer, R.: The implications of embodiment for behavior and cognition: animal and robotic case studies (2012). arXiv:1202.0440

  10. Hornung, A., Wurm, K., Bennewitz, M.: Humanoid robot localization in complex indoor environments. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1690–1695 (2010). doi:10.1109/IROS.2010.5649751

  11. Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots, 3rd edn. Taylor & Francis Inc, Bristol, PA, USA (2002)

    MATH  Google Scholar 

  12. Lewis, M.A., Simo, L.S.: Elegant stepping: a model of visually triggered gait adaptation. Connect. Sci. 11(3–4), 331–344 (1999). doi:10.1080/095400999116287

    Google Scholar 

  13. Lungarella, M., Sporns, O.: Information self-structuring: key principle for learning and development. In: Proceedings of the 4th International Conference on Development and Learning, 2005, pp. 25–30 (2005). doi:10.1109/DEVLRN.2005.1490938

  14. Michel, P., Chestnutt, J., Kuffner, J., Kanade, T.: Vision-guided humanoid footstep planning for dynamic environments. In: Proceedings of the IEEE-RAS Conference on Humanoid Robots (Humanoids’05), pp. 13–18 (2005)

    Google Scholar 

  15. Moughlbay, A., Cervera, E., Martinet, P.: Model based visual servoing tasks with an autonomous humanoid robot. In: Lee, S., Yoon, K.J., Lee, L. (eds.) Frontiers of Intelligent Autonomous Systems. Studies in Computational Intelligence, vol. 466, pp. 149–162. Springer, Berlin (2013). doi:10.1007/978-3-642-35485-4_12

    Google Scholar 

  16. Oriolo, G., Paolillo, A., Rosa, L., Vendittelli, M.: Vision-based odometric localization for humanoids using a kinematic ekf. In: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 153–158 (2012). doi:10.1109/HUMANOIDS.2012.6651513

  17. Rother, C., Kolmogorov, V., Blake, A.: GrabCut—interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (SIGGRAPH) (2004)

    Google Scholar 

  18. Shapiro, L.: The embodied cognition research programme. In: Philosophy Compass 2(2), 338–346 (2007). doi:10.1111/j.1747-9991.2007.00064.x

    Google Scholar 

  19. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  20. Vasiliu, L., Trochidis, I., Bussler, C., Koumpis, A.: Robobrain: a software architecture mapping the human brain. In: 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 160–165 (2014). doi:10.1109/HUMANOIDS.2014.7041353

  21. Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Galvez-Lopez, D., Haussermann, K., Janssen, R., Montiel, J., Perzylo, A., Schiessle, B., Tenorth, M., Zweigle, O., van de Molengraft, R.: Roboearth. Robot. Autom. Mag. IEEE 18(2), 69–82 (2011). doi:10.1109/MRA.2011.941632

    Google Scholar 

Download references

Acknowledgments

This research has been funded by the Ecole Centrale de Nantes (ECN) and EQUIPEX ROBOTEX, France; and the CAPES Foundation, Ministry of Education of Brazil, Brasília - DF 700040-020, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. Chame .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Chame, H.F., Chevallereau, C. (2016). Sensory-Motor Anticipation and Local Information Fusion for Reliable Humanoid Approach. In: Wenger, P., Chevallereau, C., Pisla, D., Bleuler, H., Rodić, A. (eds) New Trends in Medical and Service Robots. Mechanisms and Machine Science, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-30674-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30674-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30673-5

  • Online ISBN: 978-3-319-30674-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics