Skip to main content

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

  • 1159 Accesses

Abstract

Starting from the expertise in reliability and in performance evaluation, we present the notion of performability introduced by John Meyer in his famous paper. We recall that in the past, few industry leaders believed in stochastic models, most of them placing greater confidence in the development of deterministic models and the use of coefficients of security to take into account the different uncertainties. But now, the notion of risk has been emphasized by the development of new technologies, the generalization of insurance policies, and the practice of service level agreements. Therefore, this is the time to consider stochastic models, where former deterministic parameters are replaced by random variables, with the encouragement of industrial leaders. We illustrate these latter models through two variants of a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Which are two of Kishor Trivedi’s areas of expertise, as already illustrated in his first book.

References

  1. Aggarwal Krishan K, Gupta Jagdish S, Misra Krishna B (1973) A new method for system reliability evaluation. Microelectron Reliab 12(5):435–440

    Article  Google Scholar 

  2. Baskett F, Chandy KM, Muntz RR, Palacios FG (1975) Open, closed, and mixed networks of queues with different classes of customers. J ACM (JACM) 22(2):248–260

    Google Scholar 

  3. Beaudry MD (1978) Performance-related reliability measures for computing systems. IEEE Trans Comput 100(6):540–547

    Google Scholar 

  4. Benetto Enrico, Dujet Christiane, Rousseaux Patrick (2008) Integrating fuzzy multicriteria analysis and uncertainty evaluation in life cycle assessment. Environ Model Softw 23(12):1461–1467

    Article  Google Scholar 

  5. Blake JT, Reibman AL, Trivedi KS (1988) Sensitivity analysis of reliability and performability measures for multiprocessor systems. In: ACM SIGMETRICS performance evaluation review, vol 16. ACM, pp 177–186

    Google Scholar 

  6. Buzen Jeffrey P (1973) Computational algorithms for closed queueing networks with exponential servers. Commun ACM 16(9):527–531

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen J, Brissette FP, Chaumont D, Braun M (2013) Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two north american river basins. J Hydrol 479:200–214

    Google Scholar 

  8. Ciardo Gianfranco, Marie Raymond A, Sericola Bruno, Trivedi Kishor S (1990) Performability analysis using semi-markov reward processes. IEEE Trans Comput 39(10):1251–1264

    Article  Google Scholar 

  9. Ciciani Bruno, Grassi Vincenzo (1987) Performability evaluation of fault-tolerant satellite systems. IEEE Trans Commun 35(4):403–409

    Article  Google Scholar 

  10. Cohen JW (1969) The single server queue. North-Holland, New York, Amsterdam

    Google Scholar 

  11. Colbourn CJ (1999) Reliability issues in telecommunications network planning. In: Telecommunications network planning, pp 135–146. Springer

    Google Scholar 

  12. de Souza e Silva E, Gail HR (1998) An algorithm to calculate transient distributions of cumulative rate and impulse based reward. Stoch Models 14(3):509–536

    Google Scholar 

  13. de Souza e Silva E, Gail HR (1989) Calculating availability and performability measures of repairable computer systems using randomization. J ACM (JACM) 36(1):171–193

    Google Scholar 

  14. de Souza e Silva E, Gail HR (1992) Performability analysis of computer systems: from model specification to solution. Perform Eval 14(3):157–196

    Google Scholar 

  15. de Souza e Silva E, Gail HR (2000) Transient solutions for markov chains. In: Computational probability, pp 43–79. Springer

    Google Scholar 

  16. de Souza e Silva E, Gail HR, Campos RV (1995) Calculating transient distributions of cumulative reward. In: ACM-SIGMETRICS, pp 231–240

    Google Scholar 

  17. de Souza e Silva E, Gail HR et al (1986) Calculating cumulative operational time distributions of repairable computer systems. IEEE Trans Comput 100(4):322–332

    Google Scholar 

  18. Do Van P, Barros A, Bérenguer C (2008) Reliability importance analysis of markovian systems at steady state using perturbation analysis. Reliab Eng Syst Safety 93(11):1605–1615

    Google Scholar 

  19. Do Van P, Barros A, Bérenguer C (2010) From differential to difference importance measures for markov reliability models. Eur J Oper Res 204(3):513–521

    Google Scholar 

  20. Donatiello Lorenzo, Grassi Vincenzo (1991) On evaluating the cumulative performance distribution of fault-tolerant computer systems. IEEE Trans Comput 40(11):1301–1307

    Article  Google Scholar 

  21. Donatiello L, Iyer BR (1987) Analysis of a composite performance reliability measure for fault-tolerant systems. J ACM (JACM) 34(1):179–199

    Google Scholar 

  22. Fricks R, Telek M, Puliafito A, Trivedi K (1998) Markov renewal theory applied to performability evaluation. In: State-of-the-art in Performance modeling and simulation. modeling and simulation of advanced computer systems: applications and systems. Gordon & Breach, Newark, NJ, pp 193–236

    Google Scholar 

  23. Furchtgott DG, Meyer JF (1984) A performability solution method for degradable nonrepairable systems. IEEE Trans Comput 100(6):550–554

    Google Scholar 

  24. Furchtgott DG, Meyer JF (1978) Performability evaluation of fault-tolerant multiprocessors. In: Digest 1978 government micro-circuit applications conference, pp 362–365. NTIS Springfield, VA

    Google Scholar 

  25. Garelli Marco, Ferrero Andrea (2012) A unified theory for s-parameter uncertainty evaluation. IEEE Trans Microwave Theory Tech 60(12):3844–3855

    Article  Google Scholar 

  26. German Reinhard (2000) Markov regenerative stochastic petri nets with general execution policies: supplementary variable analysis and a prototype tool. Perform Eval 39(1):165–188

    Article  MathSciNet  MATH  Google Scholar 

  27. German Reinhard (2001) Iterative analysis of markov regenerative models. Perform Eval 44(1):51–72

    Article  MATH  Google Scholar 

  28. German R, Telek M (1999) Formal relation of markov renewal theory and supplementary variables in the analysis of stochastic Petri nets. In: Proceedings of the 8th international workshop on Petri nets and performance models, IEEE, pp 64–73

    Google Scholar 

  29. Goyal Ambuj, Tantawi Asser N (1987) Evaluation of performability for degradable computer systems. IEEE Trans Comput 100(6):738–744

    Article  MATH  Google Scholar 

  30. Goyal Ambuj, Tantawi Asser N (1988) A measure of guaranteed availability and its numerical evaluation. IEEE Trans Comput 37(1):25–32

    Article  Google Scholar 

  31. Goyal A, Tantawi AN, Trivedi KS (1985) A measure of guaranteed availability. In: IBM Thomas J, Watson Research Center

    Google Scholar 

  32. Grassi Vincenzo, Donatiello Lorenzo (1992) Sensitivity analysis of performability. Perform Eval 14(3):227–237

    Article  MATH  Google Scholar 

  33. Haverkort BR, Meeuwissen AMH (1995) Sensitivity and uncertainty analysis of markov-reward models. IEEE Trans Reliab 44(1):147–154

    Google Scholar 

  34. Haverkort BR, Niemegeers IG (1996) Performability modelling tools and techniques. Performance Eval 25(1):17–40

    Google Scholar 

  35. Heidelberger P, Goyal A (1987) Sensitivity analysis of continuous time markov chains using uniformization. In: Proceedings of the second international workshop on applied mathematics and performance/reliability models of computer/communication systems

    Google Scholar 

  36. Hirel C, Sahner R, Zang X, Trivedi K (2000) Reliability and performability modeling using sharpe 2000. In: Computer performance evaluation. Modelling techniques and tools, pp 345–349. Springer

    Google Scholar 

  37. Iyer Balakrishna R, Donatiello Lorenzo, Heidelberger Philip (1986) Analysis of performability for stochastic models of fault-tolerant systems. IEEE Trans Comput 100(10):902–907

    Article  Google Scholar 

  38. Jackson PS, Hockenbury RW, Yeater ML (1982) Uncertainty analysis of system reliability and availability assessment. Nuclear Eng Des 68(1):5–29

    Article  Google Scholar 

  39. Kulkarni VG, Nicola VF, Smith RM, Trivedi KS (1986) Numerical evaluation of performability and job completion time in repairable fault-tolerant systems. In: 16th international symposium on fault-tolerant computing, IEEE

    Google Scholar 

  40. Lanus M, Yin L, Trivedi KS (2003) Hierarchical composition and aggregation of state-based availability and performability models. IEEE Trans Reliab 52(1):44–52

    Google Scholar 

  41. Lüthi Johannes, Haring Günter (1998) Mean value analysis for queueing network models with intervals as input parameters. Performance Eval 32(3):185–215

    Article  Google Scholar 

  42. Lüthi Johannes, Majumdar Shikharesh, Kotsis Gabriele, Haring Günter (1997) Performance bounds for distributed systems with workload variabilities and uncertainties. Parallel Comput 22(13):1789–1806

    Article  MATH  Google Scholar 

  43. Majumdar S, Ramadoss R (1995) Interval-based performance analysis of computing systems. In: Proceedings of the third international workshop on modeling, analysis, and simulation of computer and telecommunication systems, 1995. MASCOTS’95, pp 345–351. IEEE

    Google Scholar 

  44. Marie RA, Reibman AL, Trivedi KS (1987) Transient analysis of acyclic markov chains. Performance Eval 7(3):175–194

    Google Scholar 

  45. Meyer John F (1980) On evaluating the performability of degradable computing systems. IEEE Trans Comput 100(8):720–731

    Article  MATH  Google Scholar 

  46. Meyer John F (1982) Closed-form solutions of performability. IEEE Trans Comput 100(7):648–657

    Article  Google Scholar 

  47. Meyer John F (1992) Performability: a retrospective and some pointers to the future. Performance Eval 14(3):139–156

    Article  MATH  Google Scholar 

  48. Meyer John F, Furchtgott David G, Liang TWu (1980) Performability evaluation of the sift computer. IEEE Trans Comput 100(6):501–509

    Article  Google Scholar 

  49. Misra Krishna B (1970) An algorithm for the reliability evaluation of redundant networks. IEEE Trans Reliab 19(4):146–151

    Article  Google Scholar 

  50. Moore EF, Shannon CE (1956) Reliable circuits using less reliable relays, part i. J Franklin Inst 262(3):191–208

    Google Scholar 

  51. Moskowitz Fred (1958) The analysis of redundancy networks. In: Transactions of the American institute of electrical engineers, part i: communication and electronics 77(5):627–632

    Google Scholar 

  52. Nabli Hédi, Sericola Bruno (1996) Performability analysis: a new algorithm. IEEE Trans Comput 45(4):491–494

    Article  MathSciNet  MATH  Google Scholar 

  53. Pattipati KR, Li Y, Blom HAP (1993) A unified framework for the performability evaluation of fault-tolerant computer systems. IEEE Trans Comput 42(3):312–326

    Google Scholar 

  54. Reibman Andrew, Smith Roger, Trivedi Kishor (1989) Markov and markov reward model transient analysis: an overview of numerical approaches. Eur J Oper Res 40(2):257–267

    Article  MathSciNet  MATH  Google Scholar 

  55. Reibman Andrew, Trivedi Kishor (1988) Numerical transient analysis of markov models. Comput Oper Res 15(1):19–36

    Article  MATH  Google Scholar 

  56. Reibman Andrew, Trivedi Kishor (1989) Transient analysis of cumulative measures of markov model behavior. Stoch Models 5(4):683–710

    Article  MathSciNet  MATH  Google Scholar 

  57. Rubino Gerardo, Sericola Bruno (1995) Interval availability analysis using denumerable markov processes: application to multiprocessor subject to breakdowns and repair. IEEE Trans Comput 44(2):286–291

    Article  MATH  Google Scholar 

  58. Smith RM, Trivedi KS, Ramesh AV (1988) Performability analysis: measures, an algorithm, and a case study. IEEE Trans Comput 37(4):406–417

    Google Scholar 

  59. Suné V, Carrasco JA, Nabli H, Sericola B (2010) Comment on performability analysis: a new algorithm. IEEE Trans Comput 59(1):137–138

    Google Scholar 

  60. Trivedi KS, Malhotra M (1993) Reliability and performability techniques and tools: a survey. In: Messung, modellierung und bewertung von rechen-und kommunikationssystemen, pp 27–48. Springer

    Google Scholar 

  61. Van Slyke R, Frank Howard (1971) Network reliability analysis: part i. Networks 1(3):279–290

    Article  MathSciNet  MATH  Google Scholar 

  62. Wübbeler Gerd, Krystek Michael, Elster Clemens (2008) Evaluation of measurement uncertainty and its numerical calculation by a monte carlo method. Meas Sci Technol 19(8):084009

    Article  Google Scholar 

  63. Yin L, Smith MAJ, Trivedi KS (2001) Uncertainty analysis in reliability modeling. In: Proceedings of the reliability and maintainability symposium, 2001, Annual, pp 229–234. IEEE

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond A. Marie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marie, R.A. (2016). From Performability to Uncertainty. In: Fiondella, L., Puliafito, A. (eds) Principles of Performance and Reliability Modeling and Evaluation. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-30599-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30599-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30597-4

  • Online ISBN: 978-3-319-30599-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics