Skip to main content

Probabilistic Graphical Models for Fault Diagnosis in Complex Systems

  • Chapter
  • First Online:
Principles of Performance and Reliability Modeling and Evaluation

Abstract

In this chapter, we discuss the problem of fault diagnosis for complex systems in two different contexts: static and dynamic probabilistic graphical models of systems. The fault diagnosis problem is represented using a tripartite probabilistic graphical model. The first layer of this tripartite graph is composed of components of the system, which are the potential sources of failures. The condition of each component is represented by a binary state variable which is zero if the component is healthy and one otherwise. The second layer is composed of tests with binary outcomes (pass or fail) and the third layer is the noisy observations associated with the test outcomes. The cause–effect relations between the states of components and the observed test outcomes can be compactly modeled in terms of detection and false alarm probabilities. For a failure source and an observed test outcome, the probability of fault detection is defined as the probability that the observed test outcome is a fail given that the component is faulty, and the probability of false alarm is defined as the probability that the observed test outcome is a fail given that the component is healthy. When the probability of fault detection is one and the probability of false alarm is zero, the test is termed perfect; otherwise, it is deemed imperfect. In static models, the diagnosis problem is formulated as one of maximizing the posterior probability of component states given the observed fail or pass outcomes of tests. Since the solution to this problem is known to be NP-hard, to find near-optimal diagnostic solutions, we use a Lagrangian (dual) relaxation technique, which has the desirable property of providing a measure of suboptimality in terms of the approximate duality gap. Indeed, the solution would be optimal if the approximate duality gap is zero. The static problem is discussed in detail and some interesting properties, such as the reduction of the problem to a set covering problem in the case of perfect tests, are discussed. We also visualize the dual function graphically and introduce some insights into the static fault diagnosis problem. In the context of dynamic probabilistic graphical models, it is assumed that the states of components evolve as independent Markov chains and that, at each time epoch, we have access to some of the observed test outcomes. Given the observed test outcomes at different time epochs, the goal is to determine the most likely evolution of the states of components over time. The application of dual relaxation techniques results in significant reduction in the computational burden as it transforms the original coupled problem into separable subproblems, one for each component, which are solved using a Viterbi decoding algorithm. The problems, as stated above, can be regarded as passive monitoring, which relies on synchronous or asynchronous availability of sensor results to infer the most likely state evolution of component states. When information is sequentially acquired to isolate the faults in minimum time, cost, or other economic factors, the problem of fault diagnosis can be viewed as active probing (also termed sequential testing or troubleshooting). We discuss the solution of active probing problems using the information heuristic and rollout strategies of dynamic programming. The practical applications of passive monitoring and active probing to fault diagnosis problems in automotive, aerospace, power, and medical systems are briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angeli C, Chatzinikolaou A (2004) On-line fault detection techniques for technical systems: a survey. IJCSA 1(1):12–30

    Google Scholar 

  2. Athans M, Dunn KP, Greene CS, Lee WH, Sandell NR, Segall I, Willsky AS (1975) The stochastic control of the F-8C aircraft using the multiple model adaptive control (MMAC) method. In: IEEE conference on decision and control including the 14th symposium on adaptive processes, pp 217–228

    Google Scholar 

  3. Ayoubi M, Isermann R (1997) Neuro-fuzzy systems for diagnosis. Fuzzy sets Syst 89(3):289–307

    Article  Google Scholar 

  4. Azam M, Tu F, Pattipati KR, Karanam R (2004) A dependency model based approach for identifying and evaluating power quality problems. IEEE Trans Power Deliv 19(3):1154–1166

    Article  Google Scholar 

  5. Baah GK, Podgursk A, Harrold MJ (2010) The probabilistic program dependence graph and its application to fault diagnosis. IEEE Trans Softw Eng 36(4):528–545

    Article  Google Scholar 

  6. Basseville M, Nikiforov IV (1993) Detection of abrupt changes: theory and application, vol 104. Prentice Hall, Englewood Cliffs

    Google Scholar 

  7. Basseville M, Benveniste A (1983) Desgin and comparative study of some sequential jump detection algorithms for digital signals. IEEE Trans Acoust Speech Signal Process 31(3):521–535

    Article  Google Scholar 

  8. Basseville M (1988) Detecting changes in signals and systems-a survey. Automatica 24(3):309–326

    Article  MathSciNet  MATH  Google Scholar 

  9. Beard RV (1971) Failure accomodation in linear systems through self-reorganization. Doctoral dissertation, Massachusetts Institute of Technology

    Google Scholar 

  10. Beasley JE (1987) An algorithm for set covering problem. Eur J Oper Res 31(1):85–93

    Article  MathSciNet  MATH  Google Scholar 

  11. Beasley JE (1990) A lagrangian heuristic for set-covering problems. Naval Res Logist (NRL) 37(1):151–164

    Article  MathSciNet  MATH  Google Scholar 

  12. Beasley JE, Jörnsten K (1992) Enhancing an algorithm for set covering problems. Eur J Oper Res 58(2):293–300

    Article  MATH  Google Scholar 

  13. Beasley JE, Chu PC (1996) A genetic algorithm for the set covering problem. Eur J Oper Res 94(2):392–404

    Article  MATH  Google Scholar 

  14. Bertsekas Dimitri P (1999) Nonlinear programming. Athena scientific, Belmont

    MATH  Google Scholar 

  15. Binglin Z, Tinghu Y, Ren H, Brandon JA (1993) A genetic algorithm for diagnosis problem solving. In: Proceedings of the international conference on systems, man and cybernetics, systems engineering in the service of humans, pp 404–408

    Google Scholar 

  16. Blough DM, Pelc A (1992) Complexity of fault diagnosis in comparison models. IEEE Trans Comput 41(3):318–324

    Article  Google Scholar 

  17. Bobrow DG (ed) (2012) Qualitative reasoning about physical systems. Elsevier

    Google Scholar 

  18. Boel R, Varaiya P, Wong E (1975) Martingales on jump processes. I: representation results. SIAM J control 13(5):999–1021

    Google Scholar 

  19. Boel R, Varaiya P, Wong E (1975) Martingales on jump processes. II: applications. SIAM J Control 13(5):1022–1061

    Google Scholar 

  20. Boumen R, Ruan S, de Jong I, Van De Mortel-Fronczak JM, Rooda JE, Pattipati KR (2009) Hierarchical test sequencing for complex systems. IEEE Trans Syst Man Cybern Part A Syst Hum 39(3):640–649

    Article  Google Scholar 

  21. Bragin MA, Luh PB, Yan JH, Yu N, Stern GA (2015) Convergence of the surrogate Lagrangian relaxation method. J Optim Theory Appl 164(1):173–201

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen J, Patton RJ (2012) Robust model-based fault diagnosis for dynamic systems. Springer Publishing Company, Incorporated

    MATH  Google Scholar 

  23. Chessa S, Santi P (2001) Operative diagnosis of graph-based systems with multiple faults. IEEE Trans Syst Man Cybern Part A Syst Hum 31(2):112–119

    Article  Google Scholar 

  24. Choi K, Namburu M, Azam M, Luo J, Pattipati K, Patterson-Hine A (2004) Fault diagnosis in HVAC chillers using data-driven techniques. In: Proceedings of the AUTOTESTCON. IEEE, pp 407–413

    Google Scholar 

  25. Choi K, Singh S, Kodali A, Pattipati KR, Sheppard JW, Namburu SM, Chigusa S, Prokhorov DV, Qiao L (2009) Novel classifier fusion approaches for fault diagnosis in automotive systems. IEEE Trans Instrum Meas 58(3):602–611

    Article  Google Scholar 

  26. Chow E, Willsky AS (1984) Analytical redundancy and the design of robust failure detection systems. IEEE Trans Autom Control 29(7):603–614

    Google Scholar 

  27. Chvatal V (1979) A greedy heuristic for the set-covering problem. Math Oper Res 4(3):233–235

    Article  MathSciNet  MATH  Google Scholar 

  28. Clark RN, Fosth DC, Walton VM (1975) Detecting instrument malfunctions in control systems. IEEE Trans Aerosp Electron Syst 4:465–473

    Article  Google Scholar 

  29. Dai X, Gao Z (2013) From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis. IEEE Trans Ind Inform 9(4):2226–2238

    Article  Google Scholar 

  30. Dahbura AT, Masson GM (1984) An O(\(n^{2.5}\)) fault identification algorithm for diagnosable systems. IEEE Trans Comput 100(6):486–492

    Google Scholar 

  31. Dahbura AT, Sabnani KK, King LL (1987) The comparison approach to multiprocessor fault diagnosis. IEEE Trans Comput 100(3):373–378

    Article  Google Scholar 

  32. Deb S, Pattipati KR, Raghavan V, Shakeri M, Shrestha R (1995) Multi-signal flow graphs: a novel approach for system testability analysis and fault diagnosis. IEEE Aerosp Electron Syst Mag 10(5):14–25

    Article  Google Scholar 

  33. De Faria JM, Hartmann CR, Gerberich CL, Varshney P (1980) An information theoretic approach to the construction of efficient decision trees

    Google Scholar 

  34. De Kleer J, Brown JS (1984) A qualitative physics based on confluences. Artif Intell 24(1):7–83

    Article  Google Scholar 

  35. De Kleer J, Williams BC (1987) Diagnosing multiple faults. Artif Intell 32(1):97–130

    Article  MATH  Google Scholar 

  36. Dexter AL (1995) Fuzzy model based fault diagnosis. IEE Proc-Control Theory Appl 142(6):545–550

    Article  MATH  Google Scholar 

  37. Fagin SL (1964) Recursive linear regression theory, optimal filter theory, and error analysis of optimal systems. In: IEEE international convention record, vol 12, part 1, pp 216–245

    Google Scholar 

  38. Fedi G, Giomi R, Luchetta A, Manetti S, Piccirilli MC (1998) On the application of symbolic techniques to the multiple fault location in low testability analog circuits. IEEE Trans Circ Syst II Analog Digit Signal Proc 45(10):1383–1388

    Article  Google Scholar 

  39. Fink PK, Lusth JC (1987) Expert systems and diagnostic expertise in the mechanical and electrical domains. IEEE Trans Syst Man Cybern 17(3):340–349

    Article  Google Scholar 

  40. Fisher ML (2004) The Lagrangian relaxation method for solving integer programming problems. Manag Sci 50(12 supplement):1861–1871

    Article  Google Scholar 

  41. Frank PM (1990) Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new results. Automatica 26(3):459–474

    Article  MATH  Google Scholar 

  42. Frank PM (1996) Analytical and qualitative model-based fault diagnosisa survey and some new results. Eur J control 2(1):6–28

    Article  MATH  Google Scholar 

  43. Frank PM, Ding X (1997) Survey of robust residual generation and evaluation methods in observer-based fault detection systems. J process control 7(6):403–424

    Article  Google Scholar 

  44. Frank PM, Köppen-Seliger B (1997) New developments using AI in fault diagnosis. Eng Appl Artif Intell 10(1):3–14

    Article  Google Scholar 

  45. Frank PM, Ding SX, Marcu T (2000) Model-based fault diagnosis in technical processes. Trans Inst Meas Control 22(1):57–101

    Article  Google Scholar 

  46. Forbus KD (1984) Qualitative process theory. Artif Intell 24(1):85–168

    Article  Google Scholar 

  47. Forbus KD (1987) Interpreting observations of physical systems. IEEE Trans Syst Man Cybern 17(3):350–359

    Article  Google Scholar 

  48. Gertler JJ (1988) Survey of model-based failure detection and isolation in complex plants. IEEE Control Syst Mag 8(6):3–11

    Article  Google Scholar 

  49. Gertler J (1998) Fault detection and diagnosis in engineering systems. CRC Press

    Google Scholar 

  50. Gao Z, Cecati C, Ding S (2015) A survey of fault diagnosis and fault-tolerant techniques part I: fault diagnosis. IEEE Trans Ind Electron 62(6):3757–3767

    Google Scholar 

  51. Garey MR, Johnson DS (1979) Computer and intractability. A guide to the theory of NP-completeness

    Google Scholar 

  52. Handschin E, Schweppe FC, Kohlas J, Fiechter A (1975) Bad data analysis for power system state estimation. IEEE Trans Power Apparatus Syst 94(2):329–337

    Article  Google Scholar 

  53. Hwang I, Kim S, Kim Y, Seah CE (2010) A survey of fault detection, isolation, and reconfiguration methods. IEEE Trans Control Syst Technol 18(3):636–653

    Article  Google Scholar 

  54. Hyafil L, Rivest RL (1976) Constructing optimal binary decision trees is NP-complete. Inf Process Lett 5(1):15–17

    Article  MathSciNet  MATH  Google Scholar 

  55. Isermann R (1984) Process fault detection based on modeling and estimation methodsa survey. Automatica 20(4):387–404

    Article  MATH  Google Scholar 

  56. Isermann R, Balle P (1997) Trends in the application of model-based fault detection and diagnosis of technical processes. Control Eng Pract 5(5):709–719

    Article  Google Scholar 

  57. Isermann R (1998) On fuzzy logic applications for automatic control, supervision, and fault diagnosis. IEEE Trans Syst Man Cybern Part A Syst Hum 28(2):221–235

    Article  Google Scholar 

  58. Isermann R (2005) Model-based fault-detection and diagnosisstatus and applications. Annu Rev Control 29(1):71–85

    Article  Google Scholar 

  59. Jazwinski AH (1968) Limited memory optimal filtering. IEEE Trans Autom Control 13(5):558–563

    Article  MathSciNet  Google Scholar 

  60. Jazwinski AH (2007) Stochastic processes and filtering theory. Courier Corporation

    Google Scholar 

  61. Jiang S, Kumar R (2004) Failure diagnosis of discrete-event systems with linear-time temporal logic specifications. IEEE Trans Autom Control 49(6):934–945

    Article  MathSciNet  Google Scholar 

  62. Jones HL (1973) Failure detection in linear systems. Doctoral dissertation, Massachusetts Institute of Technology

    Google Scholar 

  63. Jordan MI (1998) Learning in graphical models. MIT Press, Cambridge

    Book  Google Scholar 

  64. Kerr TH (1974) A two ellipsoid overlap test for real time failure detection and isolation by confidence regions. In: IEEE conference on decision and control including the 13th symposium on adaptive processes. IEEE, pp 735–742

    Google Scholar 

  65. Kodali A, Pattipati KR, Singh S (2013) Coupled factorial hidden Markov models (CFHMM) for diagnosing multiple and coupled faults. IEEE Trans Syst Man Cybern Syst 43(3):522–534

    Article  Google Scholar 

  66. Kodali A, Singh S, Pattipati KR (2013) Dynamic set-covering for real-time multiple fault diagnosis with delayed test outcomes. IEEE Trans Syst Man Cybern Syst 43(3):547–562

    Article  Google Scholar 

  67. Kodali A, Zhang Y, Sankavaram C, Pattipati KR, Salman M (2013) Fault diagnosis in the automotive electric power generation and storage system (EPGS). IEEE/ASME Trans Mechatron 18(6):1809–1818

    Article  Google Scholar 

  68. Kokawa M, Miyazaki S, Shingai S (1983) Fault location using digraph and inverse direction search with application. Automatica 19(6):729–735

    Article  Google Scholar 

  69. Krysander M, Frisk E (2008) Sensor placement for fault diagnosis. IEEE Trans Syst Man Cybern Part A Syst Hum 38(6):1398–1410

    Google Scholar 

  70. Kuipers B (1985) The limits of qualitative simulation. In: IJCAI, pp 128–136

    Google Scholar 

  71. Kuipers B (1986) Qualitative simulation. Artif Intell 29(3):289–338

    Article  MathSciNet  MATH  Google Scholar 

  72. Kuipers B (1987) Qualitative simulation as causal explanation. IEEE Trans Syst Man Cybern 17(3):432–444

    Article  MathSciNet  Google Scholar 

  73. Kuipers B (1994) Qualitative reasoning: modeling and simulation with incomplete knowledge. MIT press

    Google Scholar 

  74. Lainiotis DG (1971) Joint detection, estimation and system identification. Inf control 19(1):75–92

    Article  MathSciNet  MATH  Google Scholar 

  75. Leonhardt S, Ayoubi M (1997) Methods of fault diagnosis. Control Eng Pract 5(5):683–692

    Article  Google Scholar 

  76. Luo J, Pattipati KR, Qiao L, Chigusa S (2007) An integrated diagnostic development process for automotive engine control systems. IEEE Trans Syst Man Cybern Part C Appl Rev 37(6):1163–1173

    Article  Google Scholar 

  77. Luo J, Namburu M, Pattipati KR, Qiao L, Chigusa S (2010) Integrated model-based and data-driven diagnosis of automotive antilock braking systems. IEEE Trans Syst Man Cybern Part A Syst Hum 40(2):321–336

    Article  Google Scholar 

  78. Massoumnia MA (1986) A geometric approach to the synthesis of failure detection filters. IEEE Trans Autom Control 31(9):839–846

    Article  MathSciNet  MATH  Google Scholar 

  79. Mehra RK, Peschon J (1971) An innovations approach to fault detection and diagnosis in dynamic systems. Automatica 7(5):637–640

    Article  Google Scholar 

  80. Merrill HM (1972) Bad data suppression in state estimation, with applications to problems in power. Doctoral dissertation, Massachusetts Institute of Technology

    Google Scholar 

  81. Merrill WC (1985) Sensor failure detection for jet engines using analytical redundancy. J Guidance Control Dyn 8(6):673–682

    Article  Google Scholar 

  82. Miller JA, Potter WD, Gandham RV, Lapena CN (1993) An evaluation of local improvement operators for genetic algorithms. IEEE Trans Syst Man Cybern 23(5):1340–1351

    Article  Google Scholar 

  83. Milne R (1987) Strategies for diagnosis. IEEE Trans Syst Man Cybern

    Google Scholar 

  84. Ng K, Lippmann RP (1991) A comparative study of the practical characteristics of neural network and conventional pattern classifiers. In: Advances in neural information processing systems, pp 970–976

    Google Scholar 

  85. Nyberg M (2002) Model-based diagnosis of an automotive engine using several types of fault models. IEEE Trans Control Syst Technol 10(5):679–689

    Article  Google Scholar 

  86. Pattipati KR, Alexandridis MG (1990) Application of heuristic search and information theory to sequential fault diagnosis. IEEE Trans Syst Man Cybern 20(4):872–887

    Article  MATH  Google Scholar 

  87. Pattipati KR, Dontamsetty M (1992) On a generalized test sequencing problem. IEEE Trans Syst Man Cybern 22(2):392–396

    Article  MATH  Google Scholar 

  88. Pattipati KR, Raghavan V, Shakeri M, Deb S, Shrestha R (1994) TEAMS: testability engineering and maintenance system. In: American control conference, vol 2. IEEE, pp 1989–1995

    Google Scholar 

  89. Patton RJ (1991) Fault detection and diagnosis in aerospace systems using analytical redundancy. Comput Control Eng J 2(3):127–136

    Article  MathSciNet  Google Scholar 

  90. Patton RJ (1997) Robustness in model-based fault diagnosis: the 1995 situation. Annu Rev Control 21:103–123

    Article  Google Scholar 

  91. Patton RJ, Clark RN, Frank PM (eds) (2000) Issues of fault diagnosis for dynamic systems. Springer Science and Business Media

    Google Scholar 

  92. Patton RJ, Uppal FJ, Lopez-Toribio CJ (2000) Soft computing approaches to fault diagnosis for dynamic systems: a survey. In: Proceedings of the 4th IFAC symposium on fault detection supervision and safety for technical processes, pp 198–211

    Google Scholar 

  93. Peng Y, Reggia JA (1987) A probabilistic causal model for diagnostic problem solving part I: integrating symbolic causal inference with numeric probabilistic inference. IEEE Trans Syst Man Cybern 17(2):146–162

    Article  MATH  Google Scholar 

  94. Peng Y, Reggia JA (1987) A probabilistic causal model for diagnostic problem solving part II: diagnostic strategy. IEEE Trans Syst Man Cybern 17(3):395–406

    Article  MATH  Google Scholar 

  95. Peng Y, Reggia JA (1989) A connectionist model for diagnostic problem solving. IEEE Trans Syst Man Cybern 19(2):285–298

    Article  MathSciNet  Google Scholar 

  96. Peterson DW (1975) Hypothesis, estimation, and validation of dynamic social models: energy demand modeling. Doctoral dissertation, Massachusetts Institute of Technology

    Google Scholar 

  97. Raghavan V, Shakeri M, Pattipati K (1999) Optimal and near-optimal test sequencing algorithms with realistic test models. IEEE Trans Syst Man Cybern Part A Syst Hum 29(1):11–26

    Article  Google Scholar 

  98. Raghavan V, Shakeri M, Pattipati KR (1999) Test-sequencing problems arising in design planning and design for testability. IEEE Trans Syst Man Cybern 29(2):153–163

    Article  Google Scholar 

  99. Raghavan V, Shakeri M, Pattipati KR (1999) Test sequencing algorithms with unreliable tests. IEEE Trans Syst Man Cybern Part A Syst Hum 29(4):347–357

    Article  Google Scholar 

  100. Rao NS (1996) On parallel algorithms for single-fault diagnosis in fault propagation graph systems. IEEE Trans Parallel Distrib Syst 7(12):1217–1223

    Article  Google Scholar 

  101. Ruan S, Tu F, Pattipati KR, Patterson-Hine A (2004) On a multimode test sequencing problem. IEEE Trans Syst Man Cybern Part B Cybern 34(3):1490–1499

    Article  Google Scholar 

  102. Reiter R (1987) A theory of diagnosis from first principles. Artif Intell 32(1):57–95

    Article  MathSciNet  MATH  Google Scholar 

  103. Sampath M, Sengupta R, Lafortune S, Sinnamohideen K, Teneketzis D (1995) Diagnosability of discrete-event systems. IEEE Trans Autom Control 40(9):1555–1575

    Article  MathSciNet  MATH  Google Scholar 

  104. Sampath M, Sengupta R, Lafortune S, Sinnamohideen K, Teneketzis DC (1996) Failure diagnosis using discrete-event models. IEEE Trans Control Syst Technol 4(2):105–124

    Article  MATH  Google Scholar 

  105. Shakeri M, Pattipati KR, Raghavan V, Patterson-Hine A (1998) Optimal and near-optimal algorithms for multiple fault diagnosis with unreliable tests. IEEE Trans Syst Man Cybern Part C Appl Rev 28(3):431–440

    Article  Google Scholar 

  106. Shakeri M, Raghavan V, Pattipati KR, Patterson-Hine A (2000) Sequential testing algorithms for multiple fault diagnosis. IEEE Trans Syst Man Cybern Part A Syst Hum 30(1):1–14

    Article  Google Scholar 

  107. Shen Q, Leitch R (1993) Fuzzy qualitative simulation. IEEE Trans Syst Man Cybern 23(4):1038–1061

    Article  Google Scholar 

  108. Shwe MA, Middleton B, Heckerman DE, Henrion M, Horvitz EJ, Lehmann HP, Cooper GF (1991) Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. Methods Inform Med 30(4):241–255

    Google Scholar 

  109. Sinnamohideen K (1991) Discrete-event based diagnostic supervisory control system. In: AICHE annual meeting, Los Angeles

    Google Scholar 

  110. Singh S, Kodali A, Choi K, Pattipati KR, Namburu SM, Sean SC, Prokhorov DV, Qiao L (2009) Dynamic multiple fault diagnosis: mathematical formulations and solution techniques. IEEE Trans Syst Man Cybern Part A Syst Hum 39(1):160–176

    Article  Google Scholar 

  111. Smyth P (1994) Hidden Markov models for fault detection in dynamic systems. Pattern Recogn 27(1):149–164

    Article  Google Scholar 

  112. Smyth P (1994) Markov monitoring with unknown states. IEEE J Sel Areas Commun 12(9):1600–1612

    Article  MathSciNet  Google Scholar 

  113. Struss P, Price C (2003) Model-based systems in the automotive industry. AI Mag 24(4):17–34

    Google Scholar 

  114. Sullivan GF (1988) A O(\(t^3+|E|\)) fault identification algorithm for diagnosable systems. IEEE Trans Comput 37(4):388–397

    Article  MathSciNet  MATH  Google Scholar 

  115. Schweppe FC, Handschin EJ (1974) Static state estimation in electric power systems. Proc IEEE 62(7):972–982

    Article  Google Scholar 

  116. Tarn TJ, Zaborszky J (1970) A practical nondiverging filter. AIAA J 8(6):1127–1133

    Article  MathSciNet  MATH  Google Scholar 

  117. http://www.teamqsi.com/tag/industrial/

  118. Travé-Massuyes L, Escobet T, Olive X (2006) Diagnosability analysis based on component-supported analytical redundancy relations. IEEE Trans Syst Man Cybern Part A Syst Hum 36(6):1146–1160

    Article  Google Scholar 

  119. Tu F, Pattipati KR (2003) Rollout strategy for sequential fault diagnosis. IEEE Trans Syst Man Cybern Part A Syst Hum 33(1):86–99

    Google Scholar 

  120. Tu F, Pattipati KR, Deb S, Malepati VN (2003) Computationally efficient algorithms for multiple fault diagnosis in large graph-based systems. IEEE Trans Syst Man Cybern Part A Syst Hum 33(1):73–85

    Article  Google Scholar 

  121. Ungar LH, Powell BA, Kamens SN (1990) Adaptive networks for fault diagnosis and process control. Comput Chem Eng 14(4):561–572

    Article  Google Scholar 

  122. Varshney PK, Hartmann CRP, De Faria Jr J M (1982) Application of information theory to sequential fault diagnosis. IEEE Trans Comput 100(2):164–170

    Article  MATH  Google Scholar 

  123. Vasko FJ, Wilson GR (1984) Using a facility location algorithm to solve large set covering problems. Oper Res Lett 3(2):85–90

    Article  MATH  Google Scholar 

  124. Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri SN (2003) A review of process fault detection and diagnosis: part I: quantitative model-based methods. Comput Chem Eng 27(3):293–311

    Article  Google Scholar 

  125. Venkatasubramanian V, Rengaswamy R, Kavuri SN (2003) A review of process fault detection and diagnosis: part II: qualitative models and search strategies. Comput Chem Eng 27(3):313–326

    Article  Google Scholar 

  126. Venkatasubramanian V, Rengaswamy R, Kavuri SN, Yin K (2003) A review of process fault detection and diagnosis: part III: process history based methods. Comput Chem Eng 27(3):327–346

    Article  Google Scholar 

  127. Weiss SM, Kapouleas I (1989) An empirical comparison of pattern recognition, neural nets, and machine learning classification methods. In: Proceedings of the international joint conference artificial intelligence, pp 781–787

    Google Scholar 

  128. White JE, Speyer JL (1987) Detection filter design: spectral theory and algorithms. IEEE Trans Autom Control 32(7):593–603

    Article  MathSciNet  MATH  Google Scholar 

  129. Willsky AS, Deyst J, Crawford BS (1975) Two self-test methods applied to an inertial system problem. J Spacecraft Rockets 12(7):434–437

    Google Scholar 

  130. Willsky AS (1976) A survey of design methods for failure detection in dynamic systems. Automatica 12(6):601–611

    Article  MathSciNet  MATH  Google Scholar 

  131. Willsky AS, Jones HL (1976) A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems. IEEE Trans Autom Control 21(1):108–112

    Article  MathSciNet  MATH  Google Scholar 

  132. Wu TD (1991) A problem decomposition method for efficient diagnosis and interpretation of multiple disorders. Comput Methods Programs Biomed 35(4):239–250

    Article  Google Scholar 

  133. Yu F, Tu F, Tu H, Pattipati KR (2007) A Lagrangian relaxation algorithm for finding the MAP configuration in QMR-DT. IEEE Trans Syst Man Cybern Part A Syst Hum 37(5):746–757

    Article  Google Scholar 

  134. Zhang P, Ding SX (2008) On fault detection in linear discrete-time, periodic, and sampled-data systems. J Control Sci Eng

    Google Scholar 

  135. Zhang S, Pattipati KR, Hu Z, Wen X, Sankavaram C (2013) Dynamic coupled fault diagnosis with propagation and observation delays. IEEE Trans Syst Man Cybern Syst 43(6):1424–1439

    Article  Google Scholar 

Download references

Acknowledgments

The work reported in this chapter was partially supported by NSF grants ECCS-0931956 (NSF CPS), ECCS-1001445 (NSF GOALI), CCF-1331850 (NSF CyberSEES). Pattipati’s work was also supported by ONR grant N00014-10-1-0029, ONR grant N00014-12-1-0238, and QUBE grant N00173-12-2-C902. We thank NSF, ONR, and QUBE for their support of this work. Any opinions expressed in this chapter are solely those of the authors and do not represent those of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abdollahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdollahi, A., Pattipati, K.R., Kodali, A., Singh, S., Zhang, S., Luh, P.B. (2016). Probabilistic Graphical Models for Fault Diagnosis in Complex Systems. In: Fiondella, L., Puliafito, A. (eds) Principles of Performance and Reliability Modeling and Evaluation. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-30599-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30599-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30597-4

  • Online ISBN: 978-3-319-30599-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics