Skip to main content

Economic Load Dispatch Using Hybrid MpBBO-SQP Algorithm

  • Chapter
  • First Online:
Nature-Inspired Computation in Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 637))

Abstract

Solving economic load dispatch (ELD) problems of electric power systems means finding the optimal output of the generating units, so that the load demand can be satisfied with the lowest possible operating cost, and without violating any design constraint. Recently, many nature-inspired algorithms have been successfully used to solve these highly constrained non-linear and non-convex ELD problems without facing much efforts as regularly happens with the conventional optimization algorithms. Biogeography-based optimization (BBO) algorithm is a new population-based evolutionary algorithm (EA). As per the conducted studies in the literature, BBO has good exploitation, but it lacks exploration. In this study, the poor exploration level of BBO is enhanced by hybridizing it with the Metropolis criterion of the simulated annealing (SA) algorithm in order to have more control on the migrated individuals; and hence the first phase of this proposed algorithm is called Metropolis BBO (in short MpBBO). The second hybridization phase is done by combining the strength of the Sequential Quadratic Programming (SQP) algorithm with MpBBO to have a new superior algorithm called MpBBO-SQP, where the best solutions per each generation of MpBBO phase is fine-tuned by SQP phase. The performance of MpBBO-SQP is evaluated using three test cases with five different cooling strategies of SA. The results obtained show that MpBBO-SQP outperforms different BBO models as well as many other competitive algorithms presented in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The mechanisms of most algorithms are inspired by nature; or, in a more specific, from biology, physics and chemistry sciences [15].

  2. 2.

    It is important to note that the solution of this analytical technique becomes valid only if \(P_1\) passes some restrictions, like: located between lower and upper limits, positive and real, satisfies prohibited operating zones, satisfies downward and upward ramp rates, etc.

  3. 3.

    This statement becomes invalid if ramp rate limits, prohibited operating zones and transmission losses \(P_L\) are considered.

  4. 4.

    SQP is skipped because it is very popular and detailed explanation can be easily found in many mathematical optimization books; like [30].

  5. 5.

    In the literature, different cooling strategies are proposed for this purpose.

  6. 6.

    Biogeography is a branch of biology science, and it is a synthetic discipline, relying heavily on theory and data from ecology, population biology, systematics, evolutionary biology, and the earth sciences [34]. Biogeography seeks to describe, analyze and explain the geographic patterns and changing distributions of ecosystems and fossil species of plants (flora) and animals (fauna) through geological space and time [35, 36].

  7. 7.

    In island biogeography, the word “island” could be aquatic island, desert oasis, individual plants, caves, lakes or ponds, mountain-tops (sky-islands), microcosms or even patches of terrestrial ecosystems [39, 40].

  8. 8.

    The emigration and immigration rates can be modeled as exponential, logistic, linear, etc. [34, 41, 42]. Also, the maximum emigration and immigration rates can be unequal (i.e., \(I\ne E\)) [38, 42]. Moreover, the equilibrium location \(\hat{S}\) can be shifted to the right or left side based on the type of rate functions, the area of island and/or the distance or isolation between the recipient island and the source island or mainland [34, 38, 43].

  9. 9.

    Biotic factors: predation, competition, interactions, etc. Abiotic factors: wind, water, sunlight, temperature, pressure, soil, etc. [46].

  10. 10.

    The blended BBO, given in [49], has the ability to avoid this duplication phenomenon.

References

  1. Grainger, J.J., Stevenson, W.D.: Power System Analysis. McGraw-Hill Education, New York (1994)

    Google Scholar 

  2. Lee, F., Breipohl, A.: Reserve constrained economic dispatch with prohibited operating zones. IEEE Trans. Power Syst. 8(1), 246–254 (1993)

    Article  Google Scholar 

  3. Park, J., Kim, Y., Eom, I., Lee, K.: Economic load dispatch for piecewise quadratic cost function using hopfield neural network. IEEE Trans. Power Syst. 8(3), 1030–1038 (1993)

    Article  Google Scholar 

  4. Bakirtzis, A., Petridis, V., Kazarlis, S.: Genetic algorithm solution to the economic dispatch problem. IEE Proc. Gener. Transm. Distrib. 141(4), 377–382 (1994)

    Article  Google Scholar 

  5. Farag, A., Al-Baiyat, S., Cheng, T.C.: Economic load dispatch multiobjective optimization procedures using linear programming techniques. IEEE Trans. Power Syst. 10(2), 731–738 (1995)

    Article  Google Scholar 

  6. Wood, A.J., Wollenberg, B.F.: Power Generation, Operation, and Control, 2nd edn. Wiley-Interscience, New York (1996)

    Google Scholar 

  7. Saadat, H.: Power System Analysis. McGraw-Hill Series in Electrical and Computer Engineering. WCB/McGraw-Hill, Singapore (1999)

    Google Scholar 

  8. Abido, M.: Environmental/economic power dispatch using multiobjective evolutionary algorithms. IEEE Trans. Power Syst. 18(4), 1529–1537 (2003)

    Article  Google Scholar 

  9. Gaing, Z.-L.: Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 18(3), 1187–1195 (2003)

    Article  Google Scholar 

  10. Husain, A.: Electrical Power Systems, 5th edn. CBS Publishers & Distributors, New Delhi, India (2007)

    Google Scholar 

  11. Mahor, A., Prasad, V., Rangnekar, S.: Economic dispatch using particle swarm optimization: a review. Renew. Sust. Energy Rev. 13(8), 2134–2141 (2009)

    Article  Google Scholar 

  12. Hemamalini, S., Simon, S.P.: Artificial bee colony algorithm for economic load dispatch problem with non-smooth cost functions. Electr. Power Compon. Syst. 38(7), 786–803 (2010)

    Article  Google Scholar 

  13. Mohammed, Z., Talaq, J..: Economic dispatch by biogeography based optimization method. In: 2011 International Conference on Signal, Image Processing and Applications, vol. 21, pp. 161–165. IACSIT Press, Singapore (2011)

    Google Scholar 

  14. Karthikeyan, V., Senthilkumar, S., Vijayalakshmi, V.: A new approach to the solution of economic dispatch using particle swarm optimization with simulated annealing. Int. J. Comput. Sci. Appl. (IJCSA) 3(3), 37–49 (2013)

    Google Scholar 

  15. Fister Jr., I., Yang, X.-S., Fister, I., Brest, J., Fister, D.: A brief review of nature-inspired algorithms for optimization. Elektrotehniški Vestnik 80(3), 1–7 (2013)

    Google Scholar 

  16. Sinha, N., Chakrabarti, R., Chattopadhyay, P.: Evolutionary programming techniques for economic load dispatch. IEEE Trans. Evol. Comput. 7(1), 83–94 (2003)

    Article  Google Scholar 

  17. Rahmat, N., Musirin, I.: Differential evolution ant colony optimization (DEACO) technique in solving economic load dispatch problem. In: IEEE International Conference on Power Engineering and Optimization Conference (PEDCO). Melaka, Malaysia, Jun. 2012, pp. 263–268 (2012)

    Google Scholar 

  18. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  19. Pattnaik, S., Lohokare, M., Devi, S.: Enhanced biogeography-based optimization using modified clear duplicate operator. In: Second World Congress on Nature and Biologically Inspired Computing (NaBIC), Dec. 2010, pp. 715–720 (2010)

    Google Scholar 

  20. Gong, W., Cai, Z., Ling, C.X., Li, H.: A real-coded biogeography-based optimization with mutation. Appl. Math. Comput. 216(9), 2749–2758 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Gong, W., Cai, Z., Ling, C.: DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Comput. 15(4), 645–665 (2010)

    Article  Google Scholar 

  22. Lohokare, M., Pattnaik, S., Panigrahi, B., Das, S.: Accelerated biogeography-based optimization with neighborhood search for optimization. Appl. Soft Comput. 13(5), 2318–2342 (2013)

    Article  Google Scholar 

  23. Alroomi, A.R., Albasri, F.A., Talaq, J.H.: Solving the associated weakness of biogeography-based optimization algorithm. Int. J. Soft Comput. 4(4), 1–20 (2013). http://dx.doi.org/10.5121/ijsc.2013.4401

    Google Scholar 

  24. Hetzer, J., Yu, D., Bhattarai, K.: An economic dispatch model incorporating wind power. IEEE Trans. Energy Convers. 23(2), 603–611 (2008)

    Article  Google Scholar 

  25. Chaturvedi, K., Pandit, M., Srivastava, L.: Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch. IEEE Trans. Power Syst. 23(3), 1079–1087 (2008)

    Article  Google Scholar 

  26. Pavri, R., Moore, G.D.: Gas turbine emissions and control. GE Energy Services, Atlanta, GA, Technical Report GER-4211, Mar. 2001. http://site.ge-energy.com/prod_serv/products/tech_docs/en/downloads/ger4211.pdf

  27. Simon, D.: Evolutionary Optimization Algorithms: Biologically-Inspired and Population-Based Approaches to Computer Intelligence. Wiley, Hoboken, New Jersey (2013)

    MATH  Google Scholar 

  28. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Natural Computing Series. Springer, Berlin (2003)

    Google Scholar 

  29. Rao, S.S.: Engineering Optimization: Theory and Practice, 4th edn. Wiley, Hoboken, New Jersey (2009)

    Book  Google Scholar 

  30. Nocedal, J., Wright, S.: Operations Research and Financial Engineering. Numerical Optimization, 2nd edn. Springer, New York (2006)

    Google Scholar 

  31. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Černý, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  34. Lomolino, M.V., Riddle, B.R., Brown, J.H.: Biogeography, 3rd edn. Sinauer Associates, Sunderland, Mass (2009)

    Google Scholar 

  35. Jones, R.: Biogeography: Structure, Process, Pattern, and Change Within the Biosphere. Hulton Educational Publications Limited (1980)

    Google Scholar 

  36. Cox, C.B., Moore, P.D.: Biogeography: An Ecological and Evolutionary Approach. Blackwell Scientific Publications, Oxford England Cambridge, Mass (1993)

    Google Scholar 

  37. MacArthur, R.H., Wilson, E.O.: An equilibrium theory of insular zoogeography. Evolution 17(4), 373–387 (1963)

    Article  Google Scholar 

  38. MacArthur, R.H., Wilson, E.O.: The Theory of Island Biogeography. Landmarks in Biology Series. Princeton University Press, Princeton (1967)

    Google Scholar 

  39. Nierenberg, W.A. (ed.): Encyclopedia of Environmental Biology, Three-Volume Set: 1–3, 1st edn. Academic Press (1995)

    Google Scholar 

  40. Myers, A.A., Giller, P.S. (eds.): Analytical Biogeography: An Integrated Approach to the Study of Animal and Plant Distributions, 1st edn. Chapman and Hall, London (1990)

    Google Scholar 

  41. Cody, M.L.: Plants on Islands: Diversity and Dynamics on a Continental Archipelago. University of California Press, Berkeley, Calif (2006)

    Google Scholar 

  42. MacArthur, R.H., Connell, J.H.: The Biology of Populations. Wiley, New York (1966)

    Google Scholar 

  43. Losos, J.B., Ricklefs, R.E.: The Theory of Island Biogeography Revisited. Princeton University Press, Princeton (2010)

    Google Scholar 

  44. MacArthur, R.H.: Geographical Ecology: Patterns in the Distribution of Species. Harper & Row Publishers Inc., New York (1972)

    Google Scholar 

  45. Igelnik, B., Simon, D.: The eigenvalues of a tridiagonal matrix in biogeography. Appl. Math. Comput. 218(1), 195–201 (2011)

    MathSciNet  MATH  Google Scholar 

  46. MacDonald, G.M.: Biogeography: Introduction to Space, Time, and Life. Wiley, New York (2003)

    Google Scholar 

  47. Simon, D.: A probabilistic analysis of a simplified biogeography-based optimization algorithm. Evol. Comput. 19(2), 167–188 (2011)

    Article  Google Scholar 

  48. Alroomi, A.R., Albasri, F.A., Talaq, J.H.: A comprehensive comparison of the original forms of biogeography-based optimization algorithms. Int. J. Soft Comput. Artif. Intell. Appl. 2(5/6), 11–30 (2013). http://dx.doi.org/10.5121/ijscai.2013.2602

  49. Ma, H., Simon, D.: Blended biogeography-based optimization for constrained optimization. Eng. Appl. Artif. Intel. 24(March), 517–525 (2011)

    Article  Google Scholar 

  50. Simon, D.: The Matlab Code of Biogeography-Based Optimization, Aug. 2008. http://academic.csuohio.edu/simond/bbo/. Accessed 1 Feb 2013

  51. Simon, D., Ergezer, M., Du, D.: Population distributions in biogeography-based optimization algorithms with elitism. In: IEEE International Conference on in Systems, Man and Cybernetics, SMC 2009, Oct. 2009, pp. 991–996 (2009)

    Google Scholar 

  52. Nourani, Y., Andresen, B.: A comparison of simulated annealing cooling strategies. J. Phys. A: Math. Gener. 31(41), 8373–8385 (1998)

    Article  MATH  Google Scholar 

  53. Lundy, M., Mees, A.: Convergence of an annealing algorithm. Math. Program. 34(1), 111–124 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  54. Szu, H., Hartley, R.: Fast simulated annealing. Phys. Lett. A 122, 157–162 (1987)

    Article  Google Scholar 

  55. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(6), 721–741 (1984)

    Google Scholar 

  56. Victoire, T.A., Jeyakumar, A.: Hybrid PSO-SQP for economic dispatch with valve-point effect. Electr. Power Syst. Res. 71(1), 51–59 (2004)

    Article  Google Scholar 

  57. Albasri, F., Alroomi, A., Talaq, J.: Optimal coordination of directional overcurrent relays using biogeography-based optimization algorithms. IEEE Trans. Power Delivery 30(4), 1810–1820 (2015)

    Article  Google Scholar 

  58. Alsumait, J., Sykulski, J., Al-Othman, A.: A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems. Appl. Energy 87(5), 1773–1781 (2010)

    Article  Google Scholar 

  59. Noghabi, A., Sadeh, J., Mashhadi, H.: Considering different network topologies in optimal overcurrent relay coordination using a hybrid GA. IEEE Trans. Power Delivery 24(4), 1857–1863 (2009)

    Article  Google Scholar 

  60. Bedekar, P., Bhide, S.: Optimum coordination of directional overcurrent relays using the hybrid GA-NLP approach. IEEE Trans. Power Delivery 26(1), 109–119 (2011)

    Article  Google Scholar 

  61. Yang, H.-T., Yang, P.-C., Huang, C.-L.: Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions. IEEE Trans. Power Syst. 11(1), 112–118 (1996)

    Article  Google Scholar 

  62. Park, J.-B., Lee, K.-S., Shin, J.-R., Lee, K.: A particle swarm optimization for economic dispatch with nonsmooth cost functions. IEEE Trans. Power Syst. 20(1), 34–42 (2005)

    Article  Google Scholar 

  63. Chiang, C.-L.: Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels. IEEE Trans. Power Syst. 20(4), 1690–1699 (2005)

    Article  Google Scholar 

  64. Chen, C., Yeh, S.: Particle swarm optimization for economic power dispatch with valve-point effects. In: Transmission Distribution Conference and Exposition: Latin America, TDC ’06. IEEE/PES, Aug. 2006, pp. 1–5 (2006)

    Google Scholar 

  65. Niknam, T.: A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem. Appl. Energy 87(1), 327–339 (2010)

    Article  Google Scholar 

  66. Niknam, T., Mojarrad, H.D., Meymand, H.Z.: A novel hybrid particle swarm optimization for economic dispatch with valve-point loading effects. Energy Convers. Manag. 52(4), 1800–1809 (2011)

    Article  Google Scholar 

  67. Selvakumar, A., Thanushkodi, K.: A new particle swarm optimization solution to nonconvex economic dispatch problems. IEEE Trans. Power Syst. 22(1), 42–51 (2007)

    Article  Google Scholar 

  68. Selvakumar, A.I., Thanushkodi, K.: Optimization using civilized swarm: solution to economic dispatch with multiple minima. Electr. Power Syst. Res. 79(1), 8–16 (2009)

    Article  Google Scholar 

  69. dos Santos Coelho, L., Souza, R.C.T., Mariani, V.C.: Improved differential evolution approach based on cultural algorithm and diversity measure applied to solve economic load dispatch problems. Math. Comput. Simul. 79(10), 3136–3147 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali R. Al-Roomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Al-Roomi, A.R., El-Hawary, M.E. (2016). Economic Load Dispatch Using Hybrid MpBBO-SQP Algorithm. In: Yang, XS. (eds) Nature-Inspired Computation in Engineering. Studies in Computational Intelligence, vol 637. Springer, Cham. https://doi.org/10.1007/978-3-319-30235-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30235-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30233-1

  • Online ISBN: 978-3-319-30235-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics