We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Radiophysical and Optical Chaotic Oscillators Applicable for Information Protection | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Radiophysical and Optical Chaotic Oscillators Applicable for Information Protection

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Cryptology Transmitted Message Protection

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 623 Accesses

Abstract

Mathematical models created and offered by authors are described, computer and laboratory experiments results are discussed, which disclose properties of radio electronic and optical chaotic oscillators. In this context, the suggested optical analog of the cytoskeleton microtubule is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1.  Dmitriev AS, Kislov VYa, Starkov SO. Experimental research of formation and interaction of the strange attractors in the ring oscillator. J Tech Phys. 1985; 55(12):2417–2419.

    Google Scholar 

  2. Vladimirov SN. Dynamic instabilities of flows and maps. Glance of Radiophysicist. Tomsk: Tomsk University Publ.; 2008. p. 352 (in Russian).

    Google Scholar 

  3. Izmailov IV, Kokhanenko AP, Poizner BN. Romanov I.V. The deterministic chaotic oscillator of the radio frequency range with a delay line on the optical fiber. Russ Phys J. 2008; 51(9/2):178–179 (in Russian).

    Google Scholar 

  4. Romanov IV, Izmailov IV, Kohanenko AP, Poizner BN. The chaotic oscillator with the tri-modal nonlinearity as development of the logistic map construction principle. In: Proceedings of international conference information society: ideas, technologies, systems (May 2010, Taganrog city). Part 3. Taganrog: South Technical University Publ., 2010. p. 66–73 (in Russian).

    Google Scholar 

  5. Romanov IV, Izmailov IV. The chaotic oscillator with nonlinearity of N-type and the frequency doubler. In: Proceedings of IV Russian conference material sciences, technologies and ecology in 3rd millenium. Tomsk. Oct. 19–21, 2009. Tomsk: Institute of Atmosphere Optics of Siberian Branch of RAS Publ., 2009. p. 628–631 (in Russian).

    Google Scholar 

  6. Izmailov IV, Kokhanenko AP, Romanov IV, Shergin DA. Optical fiber in the deterministic chaotic oscillator of radio frequency range. In: Proceedings of VIII international conference applied optics–2008. Sankt-Petersburg, Oct. 20–24, 2008. Vol. 3: Computer technologies in optics. p. 77–78 (in Russian).

    Google Scholar 

  7. Romanov IV, Izmailov IV, Poizner BN. Stability of static states and dynamic s in the chaotic oscillator model containing a delay line. In: Proceedings of Russian conference of relevant problems of investigation of social and engineering systems. Part 3. Taganrog: South Technical University Publ., 2011. p. 45–52 (in Russian).

    Google Scholar 

  8. Romanov IV, Izmailov EIV, Kohanenko AP, Poizner BN. Nonlinear mixing of radio- and video-signals in the system of confidential communication using the dynamic chaos. Transactions of Tomsk Polytechnical University. 2011. Vol. 318, No 2. Mathematics and Mechanics. Physics. p. 53–58 (in Russian).

    Google Scholar 

  9. Romanov IV, Izmailov EIV, Kohanenko AP, Poizner BN. Modeling of signal/noise ratio dependence on the parameter offset of the communication system using the deterministic chaos. Russ Phys J. 2011;54(5):50–55.

    Google Scholar 

  10. Romanov IV. Generation and reception of the chaotic s of high-frequency range by the dynamic system with nonlinearity in the form of parabola composition. In: Proceeding of Tomsk State University of control systems and radio electronics. 2011. No 2 (24), part 1. p. 64–68 (in Russian).

    Google Scholar 

  11. Dmitriev AS, Panas AI. Dynamic: news for communication systems. Moscow. FizMatLit Publ., 2002. 252 p (in Russian).

    Google Scholar 

  12. Dmitriev AS, Kislov VYa. Stochastic oscillations in radiophysics and electronics. Moscow: Nauka Publ.; 1989. 280 p (in Russian).

    Google Scholar 

  13. Kuznetsov SP. Dynamic chaos (lecture course). Moscow: FizMatLit; 2001. 296 p (in Russian).

    Google Scholar 

  14. Dmitriev AS, Efremova EV, Nikishov AYu, Panas AI. Generation of microwave chaotic oscillations in the CMOS structure. Nonlinear Dyn. 2010;6(1):159–167 (in Russian).

    Google Scholar 

  15. Dmitriev AS, Efremova EV, Nikishov AYu. Generation of dynamic chaos of a microwave in oscillating structure on the base of SiGe. Lett J Tech Phys. 2009;35(23):40–46.

    Google Scholar 

  16. Nikishov AYu, Panas AI. Ultra-wide-band UHF chaotic oscillator of the ring structure on the amplifying micro-assemblies. In: Foreign Radio Electronics. Achievements of Modern Radio Electronics. 2008;1:54–62 (in Russian).

    Google Scholar 

  17. Chua LO, Ying R. Finding all solutions of piecewise-linear circuits. Int J Circuit Theory Appl;1982.10(3):201–229.

    Google Scholar 

  18. Chua LO, Hasler M, Neirynck I, Verburgh P. Dynamics of a piecewise-linear resonant circuit. IEEE Trans Circuits Syst. 1982;29(8):535–547.

    Google Scholar 

  19. Chua LO, Ayrom F. Designing nonlinear single circuits: a cookbook approach. Int J Circuit Theory Appl. 1985;13(3):235–268.

    Google Scholar 

  20. Graeme JG, Tobey GE, Huelsman LP. Operational amplifiers: design and applications. New York: McGraw-Hill Book Company; 1971. 473 p.

    Google Scholar 

  21. Anishchenko VS, Vadivasova TE, Astakhov VV. Nonlinear dynamics of chaotic and stochastic systems. Fundamentals and selected problems. Saratov: Saratov University Publ.; 1999. 368 p (in Russian).

    Google Scholar 

  22. Kholodniok M, Clich A, Kubichek M, Marek M. (eds) Analysis methods of nonlinear mathematical models. Moscow, MIR Publ.; 1991. 368 p (in Russian).

    Google Scholar 

  23. Izmailov IV, Ravodin VO. Influence of nonlinearity and delay in the ring interferometer upon bifurcations (calculation and modeling). Russ Phys J.1999;1:126 (in Russian).

    Google Scholar 

  24. Anishchenko VS, Astakhov VV, Vadivasova TE, Neiman AB, Strelkova GI, Shimanskiy-Gaer L. Nonlinear effects in chaotic and stochastic systems. Moscow-Izhevsk: Institute of computer researches Publ.; 2003. 544 p (in Russian).

    Google Scholar 

  25. Afraimovich VS, Shilnikov LP. Invariant two-dimension toruses, their destruction andstochastic properties. Methods of qualitative theory of differential equations. Gorky: Gorky State University Publ.; 1983. p. 3–26 (in Russian).

    Google Scholar 

  26. Afraimovich VS, Hsu SB. Lectures on chaotic dynamical systems. In: American Mathematical Society/International Press studies in advanced mathematics. Vol. 28. USA: AMS & IP; 2003. 361 p.

    Google Scholar 

  27. Neimark YuI, Landa PS. Stochastic and chaotic oscillations. Moscow: Nauka Publ.; 1987. 424 p (in Russian).

    Google Scholar 

  28. Izmailov IV, Poizner BN. The chaos on radio frequency device with quadratic phase modulator and interference amplification of quasi-harmonic signal: a model and the calculation experiment. Izvestiya VUZ. Appl Nonlinear Dyn. 2010;18(1):61–79 (in Russian).

    Google Scholar 

  29. Izmailov IV, Poizner BN. Axiomatic scheme of studying the dynamic s: from criteria of their diversity to self-change. Tomsk: STT Publ.; 2011. 574 p (in Russian).

    Google Scholar 

  30. Koronovskiy AA, Khramov AE. Continuous wavelet analysis and its applications. Moscow: FizMatLit Publ.; 2003. 176 p (in Russian).

    Google Scholar 

  31. Vladimirov SN, Negrul VV. On autoparametric route leading to chaos in dynamical systems. Int J Bifurcation Chaos. 2002;12(4):819–826.

    Google Scholar 

  32. Izmailov IV. Process modeling in the ring interferometer with noisy modulation of optical density of the Kerr medium. Russ Phys J. 1999;11:96 (in Russian).

    Google Scholar 

  33. Denisov PE, Izmailov IV, Poizner BN. The laser emission modulation on the base of the nonlinear ring: a model and the characteristic analysis. Atmos Oceanic Opt. 2006;19(2–3):238–243.

    Google Scholar 

  34. Vladimirov SN, Izmailov IV, Poizner BN. Nonlinear-dynamic: radiophysical and optical systems/Under edition of C.N. Vladimirov. Moscow: FizMatLit Publ.; 2009. 208 p (in Russian).

    Google Scholar 

  35. Izmailov IV. The process model in nonlinear ring interferometer taking into account the delay, losses, energy volume density transformation and many-passes of the non-monochrome field. Russ Phys J. 1998;4:112 (in Russian).

    Google Scholar 

  36. Izmailov IV, Magazinnikov AL, Poizner BN. Process modeling in the ring interferometer with, lag and diffusion at non-monochrome emission. Russ Phys J. 2000;2:29–35.

    Google Scholar 

  37. Izmailov IV, Poizner BN, Ravodin VO. Elements of nonlinear optics and synergy in the lecture course of opto-informatics: textbook. Tomsk: TML-Press Publ., Press; 2007. 92 p (in Russian).

    Google Scholar 

  38. Izmailov IV, Lyachin AV, Poizner BN. The deterministic chaos in models of the nonlinear ring interferometer. Tomsk: Tomsk State University Publ.; 2007. 258 p (in Russian).

    Google Scholar 

  39. Akhmanov, SA, Zhabotinskiy ME et al. (eds) Quantum electronics: small encyclopedia. Moscow: Soviet Encyclopedia Publ.; 1969. 492 p (in Russian).

    Google Scholar 

  40. Ditchburn RW. Light. NY: Dover Publ.; 2011. 690 p.

    Google Scholar 

  41. Godzhaev NM. Optics. Moscow: Vyshaya skola Publ.; 1977. 432 p (in Russian).

    Google Scholar 

  42. Landsberg GS. Optics. Moscow: Gostekhizdat Publ; 1947. 631 p.

    Google Scholar 

  43. Akmanov SA, Vorontsov MA. Instabilities and structures in coherent nonlinear optical systems. In: Nonlinear waves: dynamics and evolution: paper collection. Moscow: Nauka Publ.; 1989. p. 228–237 (in Russian).

    Google Scholar 

  44. Akhmanov SA, Vorontsov MA. New physical principles of optical information processing. Moscow: Nauka Publ.; 1990. p. 263–326 (in Russian).

    Google Scholar 

  45. Izmailov IV, Poizner BN, Ravodin VO. Shape formation in the ring interferometer: a forecast of static final type. In: Shekhonin AA (ed) Proceedings of international optical congress “optics-XXI century” (Oct. 16–20, 2000, Sankt-Petersburg). Conference “optics and education-2000” (Oct. 19–20, 2000, Sankt-Petersburg. Sankt-Petersburg: State University of Precision Mechanics and Optics Publ.; 2000. p. 67–68 (in Russian).

    Google Scholar 

  46. Arshinov AI, Mudarisov RR, Poizner BN. Shape formation in an interferometer with the: calculation experiment. Russ Phys J. 1994;6:102–104.

    Google Scholar 

  47. Arshinov AI, Mudarisov RR, Poizner BN. Mechanisms of the simplest optical structures formation in the nonlinear Fizo interferometer. Russ Phys J.1995;6:77–81.

    Google Scholar 

  48. Arshinov AI, Mudarisov RR, Poizner BN. A mechanism of optical structure formation in the nonlinear Fizeau’s interferometer for mirror shift and variation of the beam sizes. Russ Phys J. 1997;7:67–72.

    Google Scholar 

  49. Izmailov IV. Optimization of interference interaction in the nonlinear interferometer by a choice of polarization parameters of quasi-monochrome light beams. Russ Phys J. 2000;7:101–103.

    Google Scholar 

  50. Izmailov IV, Lyachin AV, Poizner BN. Process description in the ring interferometer by: ’s bifurcations and dimension. Bull Tomsk State Univ. Ser “Phys”.2003;278:111–115 (in Russian).

    Google Scholar 

  51. Izmailov IV, Poizner BN. Property of an isodynamism as a principle of guaranteeing elimination of given system evolution. In: Fradkov AL, Churilov AN (eds) Proceedings of international conference physics and control. Saint Petersburg, Russia. August 20–22, 2003. Saint Petersburg, 2003. Vol. 1 of 4: General problems and applications. p. 58–63 (in Russian).

    Google Scholar 

  52. Izmailov IV, Lyachin AV, Nazarov ME, Poizner BN, Shergin DA. Second circuit of two-dimensional feedback loop in ring interferometer as a way to create coupled oscillators system or couplings in a oscillator. In: Fradkov AL, Churilov AN (eds) Proceedings of IEEE. Cat. № 05EX1099C: Proceedings of 2nd international conference “physics and control” (August 24–26, 2005, S.-Petersburg). Saint Petersburg;2005. p. 841–846. http://www.ieee.org.

  53. Izmailov IV, Poizner BN. Formalism and synthesis of the nonlinear-optical. Tomsk: Tomsk State University Publ.; 2001. 29 p (in Russian).

    Google Scholar 

  54. Izmailov IV, Lyachin AV, Poizner BN, Shergin DA. Discrete maps as a model of spatial deterministic chaos. Nonlinear Phenom Complex Syst.2006;9(1):32–42.

    Google Scholar 

  55. Izmailov IV, Lyachin AV, Poizner BN, Shergin DA. The spatial deterministic: a model and the phenomenon demonstration in the calculating experiment. Izvestiya VUZ. Appl Nonlinear Dyn. 2005;13(1–2):123–136 (in Russian).

    Google Scholar 

  56. Nazarov ME, Izmailov IV. Poizner BN. Attractor dimension estimation in the decipherer model on the base of the double-circuit ring interferometer. In: Proceeding of VII Russian conference problems of information safety of states, society and personality. Tomsk, Feb. 16–18, 2005. Tomsk, IOA Publ.; 2005. p. 34–36 (in Russian).

    Google Scholar 

  57. VanWriggeren GD, Roy R. Chaotic communication using time-delayed optical system. Int J Bifurcat Chaos. 1999;9(11):2129–56.

    Article  Google Scholar 

  58. Izmailov IV, Poizner BN. Experiments with the chaotic source—the radio frequency device with a quadratic phase modulator and interference amplification of the quasi-harmonic signal. Izvestiya VUZ. Appl Nonlinear Dyn. 2010;18(2):39–50 (in Russian).

    Google Scholar 

  59. Izmailov IV, Poizner BN, Romanov IV. Nonlinear optical fiber interferometer: a model and simulation. In: Kulchin YN (ed) Fundamental Problems of Opto- and Microelectronics II (13–16 September 2004, Khabarovsk, Russia) Proceedings of SPIE Vol. 5851, p. 90–95 (2005).

    Google Scholar 

  60. Romanov IV, Izmailov IV, Poizner BN. A chaos and order in the model of the nonlinear optical-fiber interferometer: wavelet analysis and other emission methods. Atmos Oceanic Opt. 2007;20(7):631–634.

    Google Scholar 

  61. Nakatsuka H, Asaka S, Itoh H, Ikeda K, Matsuoka M. Observation of bifurcation to chaos in all—optical bistable system. Phys Rev Lett. 1983;2:109–112.

    Google Scholar 

  62. Unger H-G. Planar Optical Waveguides and Fibers. Oxford: Clarendon Press; 1977. 660 p.

    Google Scholar 

  63. Kazanie A, Flere G, Metr H. Optics and communications. Moscow: MIR Publ.; 1984. 256 p (in Russian).

    Google Scholar 

  64. Hameroff SR, Watt RC. Information in processing in microtubules. J Theor Biol. 1982;98:549–561.

    Google Scholar 

  65. Penrose R. Shadows of mind: a searching for the missing science of consciousness. N.-Y, Oxford: Oxford University Press.;1994. 656 p.

    Google Scholar 

  66. Hameroff S, Penrose R. Consciousness in the universe. A review of the ‘Orch OR’ theory. Phys Life Rev. 2014;11:39–78. (http://dx.doi.org/10.1016/j.plrev.2013.08.002).

  67. Hameroff S. Quantum coherence in microtubules: a neural basis for emergent consciousness. J Conscious Stud. 1994;1:91–118.

    Google Scholar 

  68. Albrecht-Buehler G. Is cytoplasm intelligent too? Cell Muscle Motility. 1985;6:1–21.

    Google Scholar 

  69. Slyadnikov EE. Microscope model of informational bio-macro-molecule. Lett J Tech Phys. 2006;32(6):52–59.

    Google Scholar 

  70. Slyadnikov EE. Physical model and associative memory of the dipole system of cytoskeleton microtubule. J Tech Phys. 2007;77(7):77–86.

    Google Scholar 

  71. Slyadnikov EE. About interconnection of physical and informational characteristics in the vicinity of the ferroelectric transition point in the dipole system of the cytoskeleton microtubule. J Tech Phys. 2009; 79(7):1–12.

    Google Scholar 

  72. Slyadnikov EE. The microscopic model and the phase diagram of the dipole system of the cytoskeleton microtubule at finite temperatures. J Tech Phys. 2010;80(5):32–39.

    Google Scholar 

  73. Slyadnikov EE. Physical fundamentals, models of representation and image recognition in the neuron cytoskeleton microtubule. J Tech Phys. 2011;81(12):1–33.

    Google Scholar 

  74. Slyadnikov EE, Izmailov IV, Poizner BN, Sosnin EA. Microscopic model of conformational freedom degrees of cytoskeleton microtubule and its structural analog in optics. J Comput Technol. 2006;11(5):92–105 (in Russian).

    Google Scholar 

  75. Izmailov IV, Poizner BN, Slyadnikov EE, Sosnin EA. About calculation possibility in the protein nano-polymer from positions of the quantum mechanics and nonlinear optics. In: Proceedings of international conference information technologies in the modern world. Part 1—Taganrog, TGRU Publ.; 2006. p. 19–23 (in Russian).

    Google Scholar 

  76. Izmailov IV, Poizner BN, Slyadnikov EE, Sosnin EA. Quantum-synergy cyto-informatics as a possible direction in neuro-science. In: Scientific session of MIFI—2007. IX Russian conference neuro-informatics—2007 (Moscow, Jan 23–26, 2007): Proceedings collection in 3 volumes.—Part 2. Moscow: MIFI; 2007. p. 71–79 (in Russian).

    Google Scholar 

  77. Savelieva AV, Izmailov IV, Poizner BN. The double-circuit nonlinear ring interferometer and the microtubule of the cytoskeleton: search of the analog. Russ Phys J. 2008;51(9/2):206–207 (in Russian).

    Google Scholar 

  78. Izmailov IV, Poizner BN, Savelieva AV. Microtubules of the cytoskeleton as the development resource of bioengineering computing systems: to the problem statement. In: Proceedings of international conference innovations in society, engineering and culture (2008, Taganrog). Part 2.—Taganrog: SFU Publ.; 2008. p. 28–32 (in Russian).

    Google Scholar 

  79. Izmailov IV, Lyachin AV, Magazinnikov AL, Poizner BN, Shergin DA. Modeling of the laser beam transformation in the double-circuit nonlinear ring interferometer. Atmospheric and Oceanic Optics. 2007;20(3):275–282.

    Google Scholar 

  80. Maturana U, Varela F. The tree of knowledge. Boston and London: Shambhala New Science Library; 1992. 272 p.

    Google Scholar 

  81. Haken H. Principles of brain functioning: a synergetic approach to brain activity, behavior and cognition. Heidelberg: Springer; 1996. 332 p.

    Google Scholar 

  82. Arshinov VI, Budanov VG. Synergetic of complex perception. In: Archinov VI, Trofimova IN, Shendyapin VM (eds) Synergetic and psychology: texts: issue 3: cognitive processes. Moscow: Cognito-Center Publ.; 2004. p. 82–126 (in Russian).

    Google Scholar 

  83. Rakhman F (ed) Nanostructures in electronics and photonic. Moscow: Tekhnosfera Publ.; 2010. 344 p (in Russian).

    Google Scholar 

  84. Kiseliov GL. Quantum and optical electronics: textbook. Sankt-Petersburg: LAN Publ.; 2011. 320 p (in Russian).

    Google Scholar 

  85. Gaponenko SV, Rosanov NN, Ilchenko EL et al. Optics of nanostructures. In: Fiodorov AV. Sankt-Petersburg: Nedra Publ; 2005. 328 p (in Russian).

    Google Scholar 

  86. Kolesnikova II, Izmailov IV, Poizner BN, Slyadnikov EE. Mathematical model of a neuron cytoskeleton microtube functional analog. Russ Phys J. 2013;56(10/3):197–199.

    Google Scholar 

  87. Koronovskiy AA. Dynamics of single-dimension chain of the logical maps with single-direction threshold connection. Izvestiya VUZ. Appl Nonlinear Dyn. 1996;4(4–5):122–129 (in Russian).

    Google Scholar 

  88. Koronovskiy AA. Single-dimension map chain with single-direction threshold connection. Lett J Tech Phys. 1997;23(6):61–66.

    Google Scholar 

  89. Matrosov VV, Shmeliov AV. Nonlinear dynamics of the ring from three phase systems. Izvestiya VUZ. Appl Nonlinear Dyn. 2011;19(1):123–136 (in Russian).

    Google Scholar 

  90. Beloglazkina MV, Koronovskiy AA, Khramov AE. Numerical research of nonlinear non-stationary processes in the chain of coupled gyro-oscillators with the cross wave. Izvestiya VUZ. Appl Nonlinear Dyn. 2008;16(5):115–126 (in Russian).

    Google Scholar 

  91. Beloglazkina MV, Koronovskiy AA, Khramov AE. Nonlinear non-stationary processes in the chain of coupled hyro-oscillators with cross wave. J Tech Phys. 2009;79(6):13–20.

    Google Scholar 

  92. Koronovskiy AA. Dynamics of map lattice with the threshold connection. Tech Phys Lett. 1999;25(4):28–34.

    Google Scholar 

  93. Trubetskov DI, Mchedlova ES, Krasichkov LV. Introduction to self-organization theory of the open systems. Moscow: FizMatLit Publ.; 2002. 200 p (in Russian).

    Google Scholar 

  94. Pavlov EA, Osipov GV. Modeling of heart activity on the base of maps. Part II. An ensemble of coupled elements. Izvestiya VUZ. Appl. Nonlinear Dyn. 2011;19(3):116–126 (in Russian).

    Google Scholar 

  95. Bezuglova GS, Goncharov PP, Gurov YuV, Chechin GM. Discrete breathers in scalar dynamic ls on the plain square lattice. Izvestiya VUZ. Appl Nonlinear Dyn. 2011;19(3):89–103 (in Russian).

    Google Scholar 

  96. Nekorkin VI, Makarov VA, Kazantsev VB, Velarde MG. Spatial disorder and pattern in lattices of coupled bistable systems. Physica D. 1997;100:330–342.

    Google Scholar 

  97. Velarde MG, Nekorkin VI, Kazantsev VB, Ross J. The emergence of form by replication. Proc Nat Acad Sci USA. 1997;94:5024–5027.

    Google Scholar 

  98. Boccaletti St, Koronovskiy AA, Trubetskov DI, Khramov AE, Khramova AE. Stability of synchronous state of the arbitrary network of coupled elements. Izvestiya VUZ. Radiophys. 2006;49(10):917–924.

    Google Scholar 

  99. Koronovskiy AA, Khramov AE, Filatova AE. To a problem of synchronous behavior of coupled systems with discrete time. J Exp Theor Phys Lett. 2005;82(3):176–179.

    Google Scholar 

  100. Moskalenko OI, Ovchinnikov AA. Investigation of the noise influent on generalized chaotic synchronization in dissipative-coupled dynamics: stability of the synchronous mode with respect to external noise and possible practical applications. J Commun Technol Electron. 2010;55(4):436–449.

    Google Scholar 

  101. Karlov NV, Kirichenko NA. Oscillations, waves, structures. Moscow: FizMatLit Publ.; 2003. 496 p (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Izmailov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Izmailov, I., Poizner, B., Romanov, I., Smolskiy, S. (2016). Radiophysical and Optical Chaotic Oscillators Applicable for Information Protection. In: Cryptology Transmitted Message Protection. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30125-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30125-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30123-5

  • Online ISBN: 978-3-319-30125-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics