Skip to main content

Deterministic Chaos Phenomenon from the Standpoint of Information Protection Tasks

  • Chapter
  • First Online:
Cryptology Transmitted Message Protection

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Elements of classical cryptology are described. The optical vortex is interpreted as the information carrier. Fundamentals of the dynamic chaos oscillator operation are disclosed including optical ones, mathematical models are discussed, principles of its application for information protection are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As we can predetermine, the magnitude difference (not the sum of this) should be in the formula (5.4) for \( I_{{N_{R} }} (V_{C1} ) \) in [36].

  2. 2.

    We would like to note that in comments to the formula (5.29) in [30] the first term in \( h(x) \), probably, should be \( ax \) (not \( bx \)).

References

  1. Introduction to cryptography/under edition of V.V. Yashchenko. Sankt-Peterburg: Piter Publication; 2001. 288 pp. (in Russian).

    Google Scholar 

  2. Artamonov VA. Elements of cryptology. Soros Educ J. 2000; 6(5):123–127. (in Russian).

    Google Scholar 

  3. Nechaev VI. Elements of cryptography (fundamentals of theory): textbook. Moscow: Higher School Publication; 1999. 109 pp. (in Russian).

    Google Scholar 

  4. Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Um of light and the transformation of Laguerre–Gaussian laser modes. Phys Rev A. 1992; 45:81–85.

    Google Scholar 

  5. Korolenko VP. Optical vortices. Soros Educ J.1998; 6:94–99. (in Russian).

    Google Scholar 

  6. Swartzlander GA Jr., Law CT. Optical vortex solitons observed in Kerr nonlinear media. Phys Rev Lett. 1992; 69(17):2503–2506.

    Google Scholar 

  7. Rozas D, Law CT, Swartzlander GA Jr. Propagation dynamics of optical vortices. J Opt Soc Am B. 1997; 14(11):3054–3065.

    Google Scholar 

  8. Aksenov VP, Banakh VA, Tikhomirova OV. Potential and vortex features of optical speckle field and visualization of wave-front singularities. Appl Opt.1998; 37(21):4536–4540.

    Google Scholar 

  9. Berry MV. Wave dislocation reactions in non-paraxial Gaussian beams. J Mod Opt. 1998; 45(9):1845–1858.

    Google Scholar 

  10. Optical vortices horizons in world physics. In: Vasnetsov M, Staliunas K, editors. Braunschweig, Germany. 1999; 228. 218 pp.

    Google Scholar 

  11. Mansuripur M, Wrignt E. Linear optical vortices. Opt Photonics News. 1999; 10(2):40–44.

    Google Scholar 

  12. Weiss CO, Vaupel M, Staliunas K, Slekys G, Taranenko  V.B. Solitons and vortices in lasers. Appl Phys B. 1999; 68:151–168.

    Google Scholar 

  13. Aksenov VP, Kolosov VV, Tartakovskiy VA, Fortes BV. Optical vortices in nonuniform media in nonuniform media. Atmos Oceanic Opt. 1999; 12(10):952–958. (in Russian).

    Google Scholar 

  14. Voliar AV, Zhilaitis VZ, Fadeeva TA. Optical vortices in small-mode fibers. III. Dislocation reactions, phase transitions and topological birefringence. Opt. Spectrosc. 2000; 88(3):446–455 (in Russian).

    Google Scholar 

  15. Masajada J. Optical vortices and their application to interferometry. Public Institute of Physics Wroclaw University of Technology, 2004 (Prace Naukowe Instytutu Fizyki Nr 36, Monografie Nr 25). 104 pp.

    Google Scholar 

  16. Progress in Optics, vol. 53. 2009. Elsevier. doi:10.1016/S0079-6638(08)00205-9.

    Google Scholar 

  17. Adaptive optics progress. Edited by Tyson RK, Publication: InTech; 2012. doi:10.5772/46199.

    Google Scholar 

  18. Aksenov VP, Izmailov IV, Poizner BN, Tikhomirova OV. Energy streamlines in conditions of optical vortices formation. In: Matvienko GG, Panchenko MV, eds. Proceedings of SPIE seven international symposium on atmospheric and ocean optics, vol. 4341, pp. 173–180. 16–19 July 2000. Tomsk, Russia. 2000. 8 pp.

    Google Scholar 

  19. Aksenov VP, Izmailov IV, Poizner BN, Tikhomirova OV. Spatial ray dynamics at forming of optical speckle-field. In: Soskin MS, VasnetsovMV (eds). Proceedings of SPIE second international conference on singular optics (optical Vortices): fundamentals and applications, pp. 108–114, vol. 4403. 2–6 October 2000, Alushta, Crimea, Republic of Ukraine. 2001. 7 pp.

    Google Scholar 

  20. Aksenov VP, Izmailov IV, Poizner BN, Tikhomirova OV. Wave front dislocations at laser beam propagation in the inhomogeneous medium. In: Corcoran VJ, Corcoran TA (eds). Proceedings of international conference on lasers’2000, pp. 76–82. Albuquerque, USA. 4–7 December 2000. USA: STS Press, 2001. 7 pp.

    Google Scholar 

  21. Aksenov VP, Izmailov IV, Poizner BN, Tikhomirova OV. Wave and beam spatial dynamics of the light field at arising, evolution and annihilation of phase dislocations. Opti Spectro. 2002; 92(3):452–461. (in Russian).

    Google Scholar 

  22. Aksenov VP, Izmailov IV, Poizner BN, Tikhomirova OV. Spatial dynamics of optical vortexes when Gauss–Laguerre beam propagates in the Kerr nonlinear medium. Ukr J Phys. 2004; 49(5):504–511.

    Google Scholar 

  23. Aksenov VP, Izmailov IB, Kanev FYu, Pogutza ChE. Properties of vortical laser beams propagating in the turbulent atmosphere. Atmospheric and oceanic optics. Physics of the atmosphere. In: Proceeding of xvii international symposium, pp. B195–B199. Tomsk: IOA SB RAS Publication. June 28th–July 1st 2011. (in Russian).

    Google Scholar 

  24. Molina-Terriza G, Torres JP, Torner L. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys Rev Lett. 2002; 88:013601.

    Google Scholar 

  25. Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas’ko V, Barnett SM, Franke-Arnold S. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express. 2004; 12:5448–5454.

    Google Scholar 

  26. Rabinovich MI, Trubetzkov DI. Introduction to the theory of oscillations and waves. Dordrect, Boston, London: Kluwer Academic Publication; 1989. 440 pp.

    Google Scholar 

  27. Landa PS. Nonlinear oscillations and waves in dynamical systems. Dordrect, Boston, London: Kluwer Academic Publication; 1996. 538 pp.

    Google Scholar 

  28. Dmitriev AS, Kislov VYa. Oscillations in radiophysics and electronics. Moscow: Nauka Publication; 1989. 280 pp (in Russian).

    Google Scholar 

  29. Anishchenko VS, Astakhov VV, Vadivasova TE, Neiman AB, Strelkova GI, Shimanskiy-Gaer L. Nonlinear effects in chaotic and stochastic systems. Moscow–Izhevsk: Institute of Computer Researches Publication; 2003. 544 pp (in Russian).

    Google Scholar 

  30. Anishchenko VS, Vadivasova TE, Astakhov VV. Nonlinear dynamics of the chaotic and systems. Fundamentals and selected problems. Saratov, Saratov University Publication; 1999. 368 pp (in Russian).

    Google Scholar 

  31. Malinetskiy GG, Potapov AB. Modern problems of nonlinear dynamics. Moscow: Editorial URSS Publication; 2000. 336 pp. (in Russian).

    Google Scholar 

  32. Kuznetsov SP. Dynamic chaos (lecture course). Moscow: FizMatLit Publication; 2001. 296 p (in Russian).

    Google Scholar 

  33. Trubetskov DI. Introduction on synergetics: chaos and structures. Moscow: Editorial URSS Publication; 2004. 240 pp. (in Russian).

    Google Scholar 

  34. Vladimirov SN, Smolskiy SM. Non-traditional dynamics in electronics: theory and practice. Paceo Segovia Irvine (USA, CA): Scientific Research Publication Inc.; 2011. 260 pp.

    Google Scholar 

  35. Izmailov IV, Poizner BN. Axiomatic scheme of studying the dynamics: from criteria of their diversity to self-change. Tomsk: STT; 2011. 570 pp. (in Russian).

    Google Scholar 

  36. Dmitriev AS, Efremova EV Maksimov NA, Panas AI. Chaos generation. Moscow: Technosphere Publication; 2012. 424 pp. (in Russian).

    Google Scholar 

  37. Oraevskiy AN. Masers lasers and strange attractors. Quantum Electron. 1981;8(1):130–42 (in Russian).

    Google Scholar 

  38. Oraevskiy AN. Superlight wave in amplifying medium. Optical tachions. Soros Educ J. 1999; 10:75–50 (in Russian).

    Google Scholar 

  39. Khanin YaI. Fundamentals of laser dynamics. Moscow: Nauka Publication; 1999. 368 pp. (in Russian).

    Google Scholar 

  40. Napartovich AP, Sukharev AG. Information decoding in the chaotic laser circuit, which is controlled by chaotic signal. Quantum Electron. 1998; 25(1):85–88. (in Russian).

    Google Scholar 

  41. Dmitriev AS, Panas AI. Dynamic chaos: new information carrier for communication systems. Moscow: FizMatLit Publication; 2002. 252 pp. (in Russian).

    Google Scholar 

  42. Baranov SV, Kuznetsov SP. Hyperchaos in the system with delayed feedback on the base of van-der paul oscillator with modulated Q-factor. Izvestiya VUZ. Appl Nonlinear Dyn. 2010;18(4):101–110. (in Russian).

    Google Scholar 

  43. Kuznetsov SP, Sokha YuI. Hyperchaos in the model non-autonomous systems with cascade excitation transfer on spectrum. Izvestiya VUZ. Appl Nonlinear Dyn. 2010; 18(3):24–32. (in Russian).

    Google Scholar 

  44. Kuznetsov SP. Dynamic chaos and uniformly hyperbolic attractors: from mathematics to physics. Adv Phys Sci. 2011; 181(2):121–147. (in Russian).

    Google Scholar 

  45. Aidarova Yu S, Kuznetsov SP. Chaotic dynamics of the hunt model—the artificially constructed flow systems with hyperbolic attractor. Izvestiya VUZ. Appl Nonlinear Dyn. 2008; 16(3):176–196. (in Russian).

    Google Scholar 

  46. Arzhanukhina DS, Kuznetsov SP. Robust chaos in autonomous time-delay system. Izvestiya VUZ. Appl. Nonlinear Dyn. 2014; 22(2):36–49. (in Russian).

    Google Scholar 

  47. Kislov VYa, Zalogin NN, Myasin EA. Research of stochastic oscillators with delay. J Commun Technol Electron. 1979; 24(6):1118–1130. (in Russian).

    Google Scholar 

  48. Dmitriev AS, Дмитpиeв AC. Dynamic chaos in the ring oscillator systems with the nonlinear filter. Izvestiya VUZ. Radiophys. 1985; 28(4):429–439. (in Russian).

    Google Scholar 

  49. Dmitriev AS, Kislov VYa. Oscillations in the oscillator with inertial delay of the first order. Radiotekhnika i Electronika. 1984; 29(12):2389–2398. (in Russian).

    Google Scholar 

  50. Dmitriev AS, Panas AI, Starkov SO, Kuzmin LV. Experiments on RF band communications using chaos. Int J Bifurcat Chaos. 1997; 7(11):2511–2527.

    Google Scholar 

  51. Dmitriev AS, Panas AI, Starkov SO. Dynamic chaos as paradigm of the modern communication systems. Foreign radio electronics. Achiev. Mod Radio Electron. 1997; 10:4–26. (in Russian).

    Google Scholar 

  52. Astakhov V, Shabunin A, Anishchenko V. Synchronization of self-oscillations by parametric excitation. Int J Bifurcat Chaos. – 1998. – V. 8, № 7. – P. 1605–1612.

    Google Scholar 

  53. Panas AI, Yang T, Chua LO. Experimental results of impulsive synchronization between two Chua’s circuits. Int J Bifurcat Chaos. 1998; 8(3):639–644.

    Google Scholar 

  54. Dmitriev AS, Efremova EV, Nikishov AYu, Panas AI. Generation of microwave chaotic oscillations in CMOS structure. Nonlinear Dyn. 2010; 6(1):159–167. (in Russian).

    Google Scholar 

  55. Dmitriev AS, Efremova EV, Nikishov AYu. Generation of dynamic chaos in microwave range in oscillator system on the base of SiGe. Lett J Tech Phys 2/19. 2009; 35(23):40–46. (in Russian).

    Google Scholar 

  56. Nikishov AYu, Panas AI. Ultra-wide-band UHF chaotic oscillator of the ring structure on amplifying micro-assemblies. Achiev Mod Radio Electron. 2008; 1:54–62. (in Russian).

    Google Scholar 

  57. Anisimova Yu V, Dmitriev AS, Zalogin NN, Kalinin VI, Kislov V Ya., Panas AI. About one mechanism of transition to chaos in the system “electronic beam—electromagnetic wave”. Lett JETF. 1983; 37(8):387–390. (in Russian).

    Google Scholar 

  58. Kislov V Ya. Theoretical analysis of noisy oscillations in electronic-wave systems. Radiotekhnika i Elektronika. 1980; 25(8):1683–1690. (in Russian).

    Google Scholar 

  59. Feldbaum AA, Butovskiy AG. Methods of automatic control systems. Moscow: Nauka; 1971. 743 pp. (in Russian).

    Google Scholar 

  60. Vladimirov SN, Zolotov SV, Negrul’ VV, Perfiliev VI. Deterministic chaos in UHF electronics. Electron Ind. 2002; 2:87–90. (in Russian).

    Google Scholar 

  61. Vladimirov SN. Dynamic instabilities of flows and maps. A glance from radio physicist. Tomsk: Tomsk University Publication; 2008. 352 pp. (in Russian).

    Google Scholar 

  62. Vladimirov SN, Negrul VV. On autoparametric route leading to chaos in dynamical systems. Int J Bifurcat Chaos. 2002; 12(4):819–826.

    Google Scholar 

  63. Zalogin NN, Kalinin VI, Kislov V Ya. Nonlinear resonance and stochasticity in the oscillator system with delay. Radiotekhnica i Electron. 1983; 28(10):2001–2007. (in Russian).

    Google Scholar 

  64. Man’kin IA, Shkolnikov VG. Theoretical Analysis on Interaction of lengthy electronic flow with the field of the wide-band stochastic signal. Radiotekhnika i Elektronika. 1981; 26(9):1932–1938. (in Russian).

    Google Scholar 

  65. Myasin EA, Panas AI. On issue of steady-state of the UHF oscillator of wide-band stochastic oscillations. Radiotekhnica i Electron. 1983; 28(12):2423–2429. (in Russian).

    Google Scholar 

  66. Bezruchko BP, Kuznetsov SP, Trubetskov DI. Experimental observation of stochastic oscillations in the dynamic system the Dynamic System the Electronic flow – reverse electromagnetic wave. J Exp Theor Phys Lett. 1979; 29(3):180–184. (in Russian).

    Google Scholar 

  67. Bezruchko BP, Bulgakova LV, Kuznetsov SP, Trubetskov DI. Stochastic oscillations and instability in the backward wave tube. Radiotekhnika i Elektronika. 1983; 28(6):1136–1139. (in Russian).

    Google Scholar 

  68. Ginzburg NS, Kuznetsov SP. Periodic and stochastic auto-modulation modes in electronic generators with distributed interaction. In the book: Relativistic High-Frequency Electronics. Gorkiy: IPF AN SSSR Publication; 1981. pp. 101–144. (in Russian).

    Google Scholar 

  69. Dmitrieva TV, Ryskin NM, Shigaev AM. Complex dynamics of simple models of distributed self-oscillating delayed feedback systems. Nonlinear Phenom Complex Syst. 2001; 5(4):376–382.

    Google Scholar 

  70. Filatov RA, Hramov AE, Koronovskii AA. Chaotic in coupled spatially extended beam-plasma systems. Phys Lett A. 2006;358(4):301–8.

    Article  MATH  Google Scholar 

  71. Filatov RA, Hramov AE, Bliokh YP, Koronovskii AA, Felsteiner J. Influence of background gas ionization on oscillations in a virtual cathode with a retarding potential. Phys. Plasmas. 2009; 16 C 033106.

    Google Scholar 

  72. Arefiev AA, Baskakov EN, Stepanova LN. Radio engineering devices on transistor equivalents of p-n-p-n-structures. Moscow: Radio i Sviaz Publication; 1982. 104 pp. (in Russian).

    Google Scholar 

  73. Romanov IV, Izmailov IV, Kohanenko AP, Poizner BN. The chaos in experiments with radio oscillator having a delay and nonlinearity formed by two Λ-diodes. In: Proceeding of the synergy in natural science: fifth anniversary Kurdiumov interdiscipline conference, pp. 106–109. 15–18th April 2009. Tver: Tver University Publication. 2009 (in Russian).

    Google Scholar 

  74. Chua LO, Yu JB, Yu YY. Bipolar-JFET-MOSFET negative resistance devices. IEEE Trans Circuits Syst. 1985; 32(1):46–61.

    Google Scholar 

  75.  Chua LO, Yu JB, Yu YY. Negative resistance devices. Int J Circuits Theory Appl. 1983; 11:161–186.

    Google Scholar 

  76. Porter JA. JEFT transistor yields devices with negative resistance. IEEE Trans Electron Devices. 1976; 23(9):1098–1099.

    Google Scholar 

  77. Kumar U. A complication of negative resistance circuits generated by two novel algorithms. Act Passive Electron Comp. 2002; 25:211–214.

    Google Scholar 

  78. Chua LO, Desoer CA, Kuh EA. Linear and nonlinear circuits. New York: McGraw-Hill; 1987. 839 pp.

    Google Scholar 

  79. Tadic N, Gobovic DA. Floating, negative-resistance voltage-controlled resistor. In: Proceedings of the 18th IEEE on instrumentation and measurement technology conference (IMTC 2001), vol. 1, pp. 437–442. Budapest. 2001.

    Google Scholar 

  80. Rulkov NF. Images of synchronized chaos. CHAOS. 1996; V 6(3):262–279.

    Google Scholar 

  81. Zhong GQ, Ko KT, Man KF, Tang KS. A systematic procedure for synthesizing two-terminal devices with polynomial non-linearity. Int J Circ Theor Appl. 2001; 29:241–249.

    Google Scholar 

  82. Zeiger SG, klimontovich Yu L, Landa PS, et al. Wave and fluctuation processes in lasers. Moscow: Nauka Publication; 1974. 256 pp. (in Russian).

    Google Scholar 

  83. Papoff F, D’Alessandro G, Oppo G-L, et al. Local and global effects of boundaries on optical-pattern formation in Kerr media. Phys Rev A. 1994; 48(1):634–641.

    Google Scholar 

  84. Mel’nikov LA, Koniukhov AI, Riabinina MV. Dynamics of transverse polarization field structure in lasers. Izvestiya VUZ. Appl Nonlinear Dyn. 1996; 4(6):33–53. (in Russian).

    Google Scholar 

  85. Rosanov NN. Optical bistability and in distributed nonlinear systems. Moscow: Nauka Publication; 1997. 336 pp. (in Russian).

    Google Scholar 

  86. Napartovich AP, Sukharev AG. Synchronizing a chaotic laser by injecting a chaotic signal with a frequency offset. J Exp Theoret Phys. 1999; 88(5):875–881.

    Google Scholar 

  87. Sivaprakasam S, Shore KA. Critical signal strength for effective decoding in diode laser chaotic optical communications. Phys Rev E. 2000; 61(5):5997–5999.

    Google Scholar 

  88. Mel’nikov LA, Konukhov AI, Veshneva IV, et al. Nonlinear dynamics of spatial and temporal patterns in lasers and atom optics: Kerr-lens mode-locked laser, Zeeman laser and Bose-Einstein atomic condensate. Izvestiya VUZ. Appl nonlinear Dyn. 2002;10(3):40–62. (in Russian).

    Google Scholar 

  89. Smirnov E, Stepin M, Shandarov V, Kip D. Pattern formation by spatially incoherent light in a nonlinear ring cavity. Appl Phys B. 2006; 85:135–141.

    Google Scholar 

  90. Agrawal GP. Application of nonlinear fiber optics. New York: Academic Press; 2008. 624 pp.

    Google Scholar 

  91. Bjorkholm JE, Smith PW, Tomlinson WJ, Kaplan AE. Optical bistability based on self-focusing. Opt Lett. 1981; 6(7):345–347.

    Google Scholar 

  92. Akhmanov SA, Vorontsov MA, Ivanov V Yu, Larichev AV, Zhelezykh NI. Controlling transverse-wave interaction of spatiotemporal structures. Opt Soc Am B. 1992; 9(1):P. 78–90.

    Google Scholar 

  93. D’Alessandro G, Firth WJ. Hexagonal spatial patterns for a Kerr slice with a feedback mirror. Phys Rev A. 1992; 46(1):537–548.

    Google Scholar 

  94. Adachihara H, Faid H. Two-dimensional nonlinear-interferometer pattern analysis and decay of spirals. Opt Soc Am. 1993; 10(7):1242–1253.

    Google Scholar 

  95. Vorontsov MA, Firth WJ. Pattern formation and competition in nonlinear optical systems with two-dimensional feedback. Phys Rev A. 1994; 49(4):2891–2905.

    Google Scholar 

  96. Arshinov AI, Mudarisov RR, Poizner BN. Mechanisms of formation of the simplest optical structures in the nonlinear Fizeau interferometer. Russ Phys J. 1995; 6:77–81.

    Google Scholar 

  97. Larichev AV, Nikolaev IP, Shmalgausen VI. Optical dissipative structures with controlled spatial period in the nonlinear system with fourier filter in the feedback loop. Quant Electron. 1996; 10:894–898. (in Russian).

    Google Scholar 

  98. Vorontsov MA, Karpov AYu. Pattern formation due to interballon spatial mode coupling. Opt Soc Am B. 1997; 1.

    Google Scholar 

  99. Martin R, Oppo G-L, Harkness GK, et al. Controlling pattern formation and spatio-temporal disorder in nonlinear optics. Opt Express. 1997; 1(1):39–43.

    Google Scholar 

  100. Garcia-Ojalvo J, Roy R. Spatiotemporal communication with synchronized optical chaos. 2000. 4 pp. http://xxx.lanl.gov/abs/nlin.CD/0011012. Accessed 6 Nov 2000.

  101. Chesnokov SS, Rybak AA. Spatiotemporal chaotic behavor of time-delayed nonlinear optical systems. Laser Phys. 2000;10(3):P. 1–8.

    Google Scholar 

  102. Vorontsov MA, Carhart GW, Dou R. Spontaneous optical pattern formation in a large array of optoelectronic feedback circuits. J Opt Soc Am B. 2000;17(2):266–274.

    Google Scholar 

  103. Baliakin AA, Ryskin NM. Transition to the chaos in nonlinear ring resonator at excitation by the multi-frequency signal. Bull Russ Acad Sci Phys. 2001;65(12):1741–1744. (in Russian).

    Google Scholar 

  104. Baliakin AA. Investigation of chaotic dynamic of the ring nonlinear resonator at double-frequency external impact. Izvestiya VUZ. Appl Nonlinear Dyn.2003;11(4):3–15. (in Russian).

    Google Scholar 

  105. Ryskin NM, Khavroshin OS. Chaos Control in the Ikeda system: simplified model in the form of point representastion. Izvestiya VUZ. Appl Nonlinear Dyn. 2009;17(2):66–78. (in Russian).

    Google Scholar 

  106. Ryskin NM, Khasvroshin OS. Chaos control in the Ikeda system: spatial-temporal model. Izvestiya VUZ. Appl. Nonlinear Dyn. 2009; 17(2):87–100. (in Russian).

    Google Scholar 

  107. IkedaK. Multiple-valued stationary state and its instability of the transmitted light by ring cavity system. Opt. Comm. 1979;30(2):257–260.

    Google Scholar 

  108. Akhmanov SA, Voromtsov MA. Nonlinear waves: dynamics and evolution: collection of papers. Moscow: Nauka Publication; 1989.pp. 228–237. (in Russian).

    Google Scholar 

  109. New physical principles of optical information processing: collection of papers. Under edition of Akhmanov, SA, Vorontsov, MV. Moscow: Nauka Publication; 1990. pp. 263–326. (in Russian).

    Google Scholar 

  110. Vorontsov MA. Nonlinear wave spatial dynamics of light fields. Bull Russ Acad Sci Phys. 1992; 56(4):7–15. (in Russian).

    Google Scholar 

  111. Arshinov AI, Mudarisov RR, Poizner BN. The mechanism of optical structures formation in the nonlinear fizeau interferometer at mirror shift and beam parameter variation. Russ Phys J. 1997; 7:67–72. (in Russian).

    Google Scholar 

  112. Rybak AA, Chesnokov SS. Distributed nonlinear-optical systems with the delay line as generators of artificial optical turbulence “Optics-99” In: proceedings of internation conference of young researchers and experts, p. 73. Sankt-Peterburg, ITMO Publication, 19–21 Oct. 1999 (in Russian).

    Google Scholar 

  113. Beliakov VA, Sonin AS. Optics of cholesterol liquid crystals. Moscow: Nauka Publication. 360 pp. (in Russian).

    Google Scholar 

  114. Pestriakov VB, Afanasiev VP, Gurvich VL et al. Noise-like sugnals in systems of information transmission. Moscow: Sovetskoe Radio Publication; 1973. 424 pp. (in Russian).

    Google Scholar 

  115. Varakin l.E. Communication systems with noise-like signals. Moscow: Radio i Sviaz; 1985. 384 pp. (in Russian).

    Google Scholar 

  116. Harmuth HF Nonsinusoidal waves for radar and radio communications. Toronto: Academic Press; 1981. 362 pp.

    Google Scholar 

  117. Fujisaka H, Yamada T. Stability theory of synchronized motion in coupled systems. Prog. Theor. Phys. 1983; 69:32–46.

    Google Scholar 

  118. Afraimovich VS, Verichev NN, Rabinovich MI. Synchronization of oscillations in the dissipative systems. Izvestiya VUZ. Radiophys. 1986; 29:1050–1060. (in Russian).

    Google Scholar 

  119. Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys Rev Lett. 1990; 64:821–824.

    Google Scholar 

  120. Kuznetsov AP, Kuznetsov SP, Ryskin NM. Nonlinear oscillations: textbook for universities. Moscow: FizMatLit Publication; 2002. 292 pp. (in Russian).

    Google Scholar 

  121. Pecora LM, Carrol TL. Driving systems with chaotic signals. Phys Rev A. 1991; 4(44):2374–2384.

    Google Scholar 

  122. Rosenblum VG, Pikovsky AS, Kurths J. Phase synchronization of chaotic oscillators. Phys Rev Lett. 1996; 76(11):1804–1807.

    Google Scholar 

  123. Chen JY, Wong KW, Cheng LM, Shuai JW. A secure communication scheme based on the phase of chaotic systems. Chaos. 2003; 13(2):508–514.

    Google Scholar 

  124. Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HI. Generalized of chaos in directionally coupled chaotic systems. Phys Rev E. 1995; 51(2):980–994.

    Google Scholar 

  125. Terry JR, VanWiggeren GD. Chaotic communication using generalized synchronization. Chaos Solitons Fractals. 2001; 12(1):145–152.

    Google Scholar 

  126.  Rosenblum M.G., Pikovsky A.S., Kurths J. From phase to lag synchronization in coupled chaotic oscillators. Phys Rev Lett. 1997; 78(22):4193–4196.

    Google Scholar 

  127. Taherion S, Lai Y-C. Observability of lag synchronization of coupled chaotic oscillators. Phys Rev E.1999; 59(6):6247–6250.

    Google Scholar 

  128. Fahy S, Hamann DR. Transition from chaotic to nonchaotic behavior in randomly driven systems. Phys Rev Lett. 1992; 69(5):761–764.

    Google Scholar 

  129. Martian A, Banavar JR. Chaos, noise, and synchronization. Phys Rev Lett. 1994; 72(10):1451–1454.

    Google Scholar 

  130. Kaulakys B, Vektaris G. Transition to nonchaotic behavior in a Brownian-type motion. Phys Rev E. 1995; 52(2):2091–2094.

    Google Scholar 

  131. Chen Y-Y. Why do chaotic orbits converge under a random velocity reset? Phys. Rev. Lett. 1996; 77(21):4318–4321.

    Google Scholar 

  132. Kaulakys B, Ivanauskas F, Mekauskas T. Synchronization of chaotic systems driven by identical noise. Int J Bifurcat Chaos. 1999; 9(3):533–539.

    Google Scholar 

  133. Toral R, Hernandez-Garcia E, Piro O, Mirasso CR. Analytical and numerical studies of noise-induced synchronization of chaotic systems. Chaos. 2001; 11(3):665–673.

    Google Scholar 

  134. Volkovskiy AR, Rul’kov NF. Synchronous chaotic response of the nonlinear oscillating system as a principle of detection of the chaos informative component. Tech Phys Lett. 1993; 19(3):71–75. (in Russian).

    Google Scholar 

  135. Vladimirov SN, Negrul VV. Communication systems with passive chaotic synchronization. In: Proceedings of 5-th International Conference (Relevant Problems of Electronic Instrumentation APEP-2000. Novosibirsk, vol. 7. pp. 39–41. 26–29th Sept 2000 (in Russian).

    Google Scholar 

  136. Shalfeev VD, Osipov GV, Kozlov AK, Volkovskiy AV. Chaotic oscillations: generation, synchronization, control. Foreign radio electronics. Achiev. Mod. Radio Electron. 1997; 10:27–49. (in Russian).

    Google Scholar 

  137. Hasler M. Achievements in the field of information transmission with chaos utilization. Foreign radio electronics. Achiev Mod Radio Electron. 1998; 11:33–43. (in Russian).

    Google Scholar 

  138. Andreev Yu V, Dmitriev AS, Emez SV, Panas AI, Starkov SO, Balabin AM, Dmitriev AA, Kishik VB, Kuzmin LV, Borisenko AG. Strategies of dynamic chaos utilization in communication systems and computing networks. Separation of chaotic coder and channel coder. Foreign radio electronics. Achiev Mod Radio Electron. 2000; 11:4–26. (in Russian).

    Google Scholar 

  139. Starkov SO, Schwarz V, Abel A. Multi-user communication systems with utilization of the dynamic chaos. Foreign radio electronics. Achiev Mod Radio Electron. 2000; 11:34–47. (in Russian).

    Google Scholar 

  140. Dmitriev AS, Starkov SO, Kuzmin LV. Abstracts of international conference “Progress in nonlinear science”, p. 204. Nizhny Novgorod. 2–6 July 2000.

    Google Scholar 

  141. Dmitriev AS, Kriaginskiy BE, Panas AI, Starkov SO. Dynamic Chaos in Radiophysics and electronics. Direct-chaotic schemes of information transmission in Ultra-High-Frequency Range. Radiotekhnika i Elektronika. 2001; 46(2):224–233. (in Russian).

    Google Scholar 

  142. Dmitriev AS, Kiarginskiy BE, Maksimov NA, Panas AI, Starkov SO. Perspectives of development of the direct-chaotic communication systems in radio and UHF ranges. Radio Eng. 2000; 3:9–20. (in Russian).

    Google Scholar 

  143. Dmitriev AS. Dynamic Chaos as the information carrier. News in synergy: a glance to third millennium. Moscow: Nauka; 2002. pp. 82–122. (in Russian).

    Google Scholar 

  144. Koronovskii AA, Moskalenko OI, Hramov AE. On the use of chaotic for secure communication. Uspekhi Fizicheskikh Nauk. 2009;179(12):1281–310. doi:10.3367/UFNr.0179.200912c.1281.

    Article  Google Scholar 

  145. Downes P. Secure communication using chaotic synchronization. SPEE Chaos Commun. 1993:227–233.

    Google Scholar 

  146. Dmitriev AS, Kuzmin LV, Panas AI. Communication system with summation on modulo of chaotic and information signals. Radiotekhnika i Elektronika. 1999;44(8):988–96 (in Russian).

    Google Scholar 

  147. Yang T. Recovery of digital signals from chaotic. Int J Circu Theor Appl. 1995;23(6):611–5.

    Article  MATH  Google Scholar 

  148. Kalianov EV, Grigoryants VV. Information transmission with usage of masking chaotic oscillations. J Tech Phys Lett. 2001; 27(6):71–76. (in Russian).

    Google Scholar 

  149. He R, Vaidya PG. Implementation of chaotic with chaotic. Phys. Rev. E. 1998; 57(2):1532–1535.

    Google Scholar 

  150. Hayes S, Grebogi C, Ott E. Communicating with chaos. Phys. Rev. Lett. 1993; 70(20):3031–3034.

    Google Scholar 

  151. Schweizer J, Kennedy M. Predictive poincare control modulation: a new method for modulating digital information onto a chaotic signal. In: Proceedings of Irish DSP and control colloquium, pp. 125–132. 1994.

    Google Scholar 

  152. Dmitriev AS, Starkov SO. Transmission using the chaos and classical information theory. Foreign radio electronics. Achiev. Mod. Radio Electron. 1998; 11:4–31. (in Russian).

    Google Scholar 

  153. Dmitriev AS, Panas AI, Starkov SO et al. The method of information transmission using chaotic signals: Russian patent no 2185032. 27.07.2000.

    Google Scholar 

  154. Short KM. Step toward unmasking secure communication. Int J chaos. 1994;4(4):959–77.

    Article  MATH  Google Scholar 

  155. Short KM. Unmasking a modulated chaotic communication scheme. Int J chaos. 1996;6(2):367–75.

    Article  MathSciNet  MATH  Google Scholar 

  156. Short KM, Parcer AT. Unmasking a hyperchaotic communication scheme. Phys. Rev. E. 1998; 58(1):1159–1162.

    Google Scholar 

  157. Perez G, Cerdeira HA. Extracting messages masked by chaos. Phys. Rev. Lett. 1995; 74(11):1970–1974.

    Google Scholar 

  158. Changsong Z, Lai C-H. Decoding information by following parameter modulation with parameter adaptive control. Phys. Rev. E. 1999; 59(6):1014–1019.

    Google Scholar 

  159. Wu CW, Yang T, Chua LO. On adaptive synchronization and control of nonlinear dynamical systems. Int J chaos. 1996;6(3):455–71.

    Article  MATH  Google Scholar 

  160. Kaplanov MV, Kuminov VN, Larionov AG, Udalov AG. Properties of information transmission systems with shift-keying of parameters and initial conditions of chaotic oscillation generators. Foreign radio electron. Achiev Mod Radio Electron. 2000; 11:48–60. (in Russian).

    Google Scholar 

  161. Anishchenko VS, Pavlov AN, Yanson NB. Reconstruction of dynamic systems in application to problems solutions of information protection. J Tech Phys. 1998;68(12):1–8 (in Russian).

    Google Scholar 

  162. Pecora LM, Carrol TL, Jonson J, Marr D. Volume-preserving and volume expanding synchronized chaotic system. Phys Rev E. 1997;56(5):5090–7.

    Article  Google Scholar 

  163. Baker GL, Golub JP, Blackbum JA. Inverting chaos: extracting system parameters from experimental data. Chaos. 1996;6(4):528–33.

    Article  MathSciNet  Google Scholar 

  164. Mathiazhagan C. Secure chaotic communication. http://xxx.lanl.gov/abs/chao-dyn/9905001. Accessed 3 May 1999.

  165. Kislov VYa, Kislov VV. New type of signals for information transmission. Wide-band chaotic signals. J. Commun. Technol. Electron. 1997; 42(9):962–973. (in Russian).

    Google Scholar 

  166. Kislov VYa, Kalmykov VV, Beliaev RV, Vorontsov GM. Correlation properties of noise-like signals generated by systems with dynamic chaos. J Commun Technol Electron. 1997; 42(11):1341–1349. (in Russian).

    Google Scholar 

  167. Beliaev RV, Vorontsov GM, Kolesov VV. Random sequences formed by nonlinear algorithm with delay. J. Commun. Technol. Electron. 2000; 45(8):954–960. (in Russian).

    Google Scholar 

  168. Kocarev LJ, Halle KS, Eckert K, Chua LO, Partlitz U. Experimental demonstration of secure communication via chaotic. Int J Chaos. 1992; 2(3):709–713.

    Google Scholar 

  169. Belskiy Yu L, Dmitriev AS. Information transmission using deterministic chaos. J. Commun. Technol. Electron. 1993; 37(7):1310–1315 (in Russian).

    Google Scholar 

  170. DedieuH, Kennedy MP, Hasler M. Chaos shift keying: modulation and demodulation of a chaotic using self-synchronizing Chua’s circuits. Procc IEEE Trans Circuits Syst. 1993; 40(2):634–642.

    Google Scholar 

  171. Halle KS, Wu CW, Itoh M, Chua LO. Spread spectrum communication through modulation of chaos. Int J chaos. 1993; 3:469–477.

    Google Scholar 

  172. Alexeyev AA, Green MM. Secure communications based on variable topology of chaotic circuits. Int J Chaos. 1997; 7(12):2861–2869.

    Google Scholar 

  173. Hasler M. Synchronization of chaotic systems and transmission of information. Int J Chaos. 1998; 8(4):647–659.

    Google Scholar 

  174. Dmitriev AS, Kuzmin LV, Panas AI. Scheme of information transmission on the base of synchronous chaotic response at filtering presence in the communication channel. Radio Eng. 1999; 4:75–80. (in Russian).

    Google Scholar 

  175. Garcia-Ojalvo J., Roy R. Parallel communication with optical spatiotemporal chaos. IEEE Trans circuits syst. I: Fundam Theory Appl. 2001; 48(12):1491–1497.

    Google Scholar 

  176. Garcia-Ojalvo J, Roy R. Communicating with optical spatiotemporal chaos. In: Proceedings of SPIE, pp. 1–8. 2002.

    Google Scholar 

  177. Napartovich AP, Sukharev AG. Influence of chaotic regular perturbations in master oscillator signal on synchronized chaos in a iscillators each being two-element array. In: Advance program of the 17th International Conference on Coherent and Nonlinear Optics “ICONO’2001”. Belarus, Minsk, 26 June–1 July 2001. P. 69.

    Google Scholar 

  178. Progress in optics. 2005; vol. 48. Elsevier. doi:10.1016/S0079-6638(08)00205-9.

    Google Scholar 

  179. VanWriggeren GD, Roy R. Communication with chaotic lasers. Science. 1998; 279:1198–1200.

    Google Scholar 

  180. VanWriggeren GD, Roy R. Optical communication with chaotic waveforms. Phys Rev Lett. 1998; 81(16):3547–3550.

    Google Scholar 

  181. Lasing PM, Gavrielides A, Kovanis V, Roy R, Thornburn KS. Encoding and decoding messages with chaotic lasers. Phys Rev E. 1997; 56(6):6302–6310.

    Google Scholar 

  182. Mirasso CR, Mulet J, Masoller C. Chaos shift-keying in chaotic external-cavity semiconductor lasers using a scheme. IEEE Photonics Technol Lett. 2002; 14(4):456–458.

    Google Scholar 

  183. VanWriggeren GD, Roy R. Chaotic communication using time-delayed optical system. Int J Chaos. 1999; 9(11):2129–2156.

    Google Scholar 

  184. Goedgebuer J-P, Larger L, Porte H. Optical based on synchronization of hyperchaos generated by a tunable laser diode. Phys Rev Lett. 1998; 80(10):2249–2252.

    Google Scholar 

  185. Poberezhskiy ES. Digital radio receiving devices. Moscow: Radio i Sviaz Publication; 1987. 184 pp. (in Russian).

    Google Scholar 

  186. Sklar B. Digital communications: fundamentals and applications.New York: Prentice Hall; 2001. 1079 pp.

    Google Scholar 

  187. Rozova SS. Classification problem in the modern science. Novosibirsk: Nauka Publication; 1986. 224 pp. (in Russian).

    Google Scholar 

  188. Pokrovskiy MP. Classiology as a System. Philos Probl. 2006; 7:108–117. (in Russian).

    Google Scholar 

  189. Vladimirov SN, Negrul’ VV Robastic variant of chaotic communication system. In: Proceedings of the International Symposium on Antennas and Propagation. vol. 3, pp. 1403–1406. Fukuoka, Japan. 21–25 August 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Izmailov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Izmailov, I., Poizner, B., Romanov, I., Smolskiy, S. (2016). Deterministic Chaos Phenomenon from the Standpoint of Information Protection Tasks. In: Cryptology Transmitted Message Protection. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30125-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30125-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30123-5

  • Online ISBN: 978-3-319-30125-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics