Skip to main content

Demarcation for the Coupling Strength in the MODENA Approach

  • Conference paper
  • First Online:
Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics & Laser Vibrometry, Volume 8
  • 1171 Accesses

Abstract

MODal ENergy Analysis (MODENA) is an energy-based approach which is proposed recently to provide a pure tone analysis of power flow. The net exchanged power between two coupled oscillators is proportional to the weighted difference of total energies of oscillators. Contrary to Statistical Energy Analysis (SEA) or Statistical modal Energy distribution Analysis (SmEdA), the MODENA approach can deal with strong coupling case where the power can flow from the oscillator with lower energy to the one with higher energy. The level of coupling strength between oscillators may affect the accuracy of the MODENA approach. This research work aims to propose a criterion to determine the level of coupling in the MODENA approach. A non-dimensional parameter named coupling strength factor is defined to clearly demonstrate the level of coupling strength. Two numerical examples: (a) a two-oscillators coupling case and (b) a multi-modal coupling case are conducted to show the effectiveness of the proposed criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Totaro, N., Guyader, J.L.: Modal energy analysis. J. Sound Vib. 332(16), 3735–3749 (2013)

    Article  Google Scholar 

  2. Lyon, R.H., Dejong, R.G.: Theory and Application of Statistical Energy Analysis. Butterworth-Heinemann, London (1995)

    Google Scholar 

  3. Lyon, R.H., Maidanik, G.: Power flow between linearly coupled oscillators. J. Acoust. Soc. Am. 34(5), 623–639 (1962)

    Article  Google Scholar 

  4. Newland, D.E.: Calculation of power flow between coupled oscillators. J. Sound Vib. 3(3), 262–276 (1966)

    Article  Google Scholar 

  5. Scharton, T.D., Lyon, R.H.: Power flow and energy sharing in random vibration. J. Acoust. Soc. Am. 43, 1332–1343 (1968)

    Article  Google Scholar 

  6. Maxit, L., Guyader, J.L.: Extension of the SEA model to subsystems with non-uniform modal energy distribution. J. Sound Vib. 265(2), 337–358 (2003)

    Article  Google Scholar 

  7. Totaro, N., Dodard, C., Guyader, J.L.: SEA coupling loss factors of complex vibro-acoustic systems. J. Vib. Acoust. 131(2), 041009 (2009)

    Article  Google Scholar 

  8. Totaro, N., Guyader, J.L.: Extension of the statistical modal energy distribution analysis for estimating energy density in coupled subsystems. J. Sound Vib. 331, 3114–3129 (2012)

    Article  Google Scholar 

  9. Le Bot, A., Vincent, C.: Validity diagrams of statistical energy analysis. J. Sound Vib. 329(2), 221–235 (2010)

    Article  Google Scholar 

  10. Pankaj, A.C., Sastry, S., Murigendrappa, S.M.: A comparison of different methods for determination of coupling factor and velocity response of coupled plates. J. Vibroeng. 15(4), 1885–1897 (2013)

    Google Scholar 

  11. Souf, B., Bareille, O., Ichchou, M.N., et~al.: Variability of coupling loss factors through a wave finite element technique. J. Sound Vib. 332(9), 2179–2190 (2013)

    Google Scholar 

  12. Secgin, A.: Numerical determination of statistical energy analysis parameters of directly coupled composite plates using a modal-based approach. J. Sound Vib. 332(2), 361–377 (2013)

    Article  Google Scholar 

  13. Ji, L., Huang, Z.: A simple statistical energy analysis technique on modeling continuous coupling interfaces. J. Vib. Acoust. 136(1), 014501 (2014)

    Article  Google Scholar 

  14. Maxit, L., Berton, M., Audoly, C., et al: Discussion about different methods for introducing the turbulent boundary layer excitation in vibroacoustic models. In: Flinovia-Flow Induced Noise and Vibration Issues and Aspects, pp. 249–278. Springer, Switzerland (2015)

    Google Scholar 

  15. Fahy, F.J.: Statistical energy analysis: a critical overview. Philos. Trans. R. Soc. Lond. Ser. A Phy. Eng. Sci. 346(1681), 431–447 (1994)

    Article  Google Scholar 

  16. Ji, L., Mace, B.R.: Statistical energy analysis modelling complex structures as coupled sets of oscillators: ensemble mean and variance of energy. J. Sound Vib. 317, 760–780 (2008)

    Article  Google Scholar 

  17. Cotoni, V., Langley, R.S., Kidner, M.R.F.: Numerical and experimental validation of variance prediction in the statistical energy analysis of built-up systems. J. Sound Vib. 288, 701–728 (2005)

    Article  Google Scholar 

  18. Xie, S.L., Zhang, Y.H., Xie, Q., et~al.: Identification of high frequency loads using statistical energy analysis method. Mech. Syst. Signal Process. 35(1), 291–306 (2013)

    Google Scholar 

  19. Legault, J., Woodhouse, J., Langley, R.S.: Statistical energy analysis of inhomogeneous systems with slowly varying properties. J. Sound Vib. 333(26), 7216–7232 (2014)

    Article  Google Scholar 

  20. Díaz-Cereceda, C., Poblet-Puig, J., Rodríguez-Ferran, A.: Automatic subsystem identification in statistical energy analysis. Mech. Syst. Signal Process. 54, 182–194 (2015)

    Article  Google Scholar 

  21. Aragonès, À., Guasch, O.: Ranking paths in statistical energy analysis models with non-deterministic loss factors. Mech. Syst. Signal Process. 52, 741–753 (2015)

    Article  Google Scholar 

  22. Maxit, L., Guyader, J.L.: Estimation of SEA coupling loss factors using a dual formulation and FEM modal information, Part I: theory. J. Sound Vib. 239(5), 907–930 (2001)

    Article  Google Scholar 

  23. Karnopp, D.: Coupled vibratory-system analysis, using the dual formulation. J. Acoust. Soc. Am. 40(2), 380–384 (1966)

    Article  Google Scholar 

  24. Maxit, L., Guyader, J.L.: Estimation of SEA coupling loss factors using a dual formulation and FEM modal information, Part II: numerical applications. J. Sound Vib. 239(5), 931–948 (2001)

    Article  Google Scholar 

  25. Maxit, L., Ege, K., Totaro, N., et~al.: Non resonant transmission modelling with statistical modal energy distribution analysis. J. Sound Vib. 333(2), 499–519 (2014)

    Google Scholar 

Download references

Acknowledgments

The work described in this paper was supported by a Program for New Century Excellent Talents in University (NCET-11-0086), a Research Grant from National Natural Science Foundation of China (No. 10902024) and also funded by Jiangsu Natural Science Foundation (No. BK2010397).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingguo Fei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Zhang, P., Wu, S., Li, Y., Fei, Q. (2016). Demarcation for the Coupling Strength in the MODENA Approach. In: De Clerck, J., Epp, D. (eds) Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics & Laser Vibrometry, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-30084-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30084-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30083-2

  • Online ISBN: 978-3-319-30084-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics