Skip to main content

Luminal Confocal Laser Endomicroscopy

  • Chapter
  • First Online:
Endoscopic Imaging Techniques and Tools

Abstract

Confocal Laser Endomicroscopy (CLE) is a noninvasive imaging modality that complements gastrointestinal endoscopy and enables virtual histopathological assessment of the mucosa in vivo and in real-time. As such, CLE can be used to dynamically target tissue acquisition in the gastrointestinal tract. Beyond the assessment of neoplasia, novel features observed by CLE can be used to manage inflammatory bowel disease, among other conditions. Ultimately, CLE will help to improve patient outcomes and reduce costs by enabling real-time decision making during endoscopy which, heretofore, required biopsy and histopathological examination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goetz M, Memadathil B, Biesterfeld S, Schneider C, Gregor S, Galle PR, et al. In vivo subsurface morphological and functional cellular and subcellular imaging of the gastrointestinal tract with confocal mini-microscopy. World J Gastroenterol. 2007;13(15):2160–5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nakai Y, Isayama H, Shinoura S, Iwashita T, Samarasena JB, Chang KJ, et al. Confocal laser endomicroscopy in gastrointestinal and pancreatobiliary diseases. Dig Endosc. 2014;26 Suppl 1:86–94.

    Article  PubMed  Google Scholar 

  3. Wallace M, Lauwers GY, Chen Y, Dekker E, Fockens P, Sharma P, Meining A. Miami classification for probe-based confocal laser endomicroscopy. Endoscopy. 2011;43(10):882–91.

    Article  CAS  PubMed  Google Scholar 

  4. Kiesslich R, Burg J, Vieth M, Gnaendiger J, Enders M, Delaney P, et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology. 2004;127(3):706–13.

    Article  PubMed  Google Scholar 

  5. Polglase AL, McLaren WJ, Delaney PM. Pentax confocal endomicroscope: a novel imaging device for in vivo histology of the upper and lower gastrointestinal tract. Expert Rev Med Devices. 2006;3(5):549–56.

    Article  PubMed  Google Scholar 

  6. Spechler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ. American Gastroenterological Association medical position statement on the management of Barrett’s esophagus. Gastroenterology. 2011;140(3):1084–91.

    Article  PubMed  Google Scholar 

  7. Peters FP, Curvers WL, Rosmolen WD, de Vries CE, Ten Kate FJ, Krishnadath KK, et al. Surveillance history of endoscopically treated patients with early Barrett’s neoplasia: nonadherence to the Seattle biopsy protocol leads to sampling error. Dis Esophagus. 2008;21(6):475–9.

    Article  CAS  PubMed  Google Scholar 

  8. Abrams JA, Kapel RC, Lindberg GM, Saboorian MH, Genta RM, Neugut AI, et al. Adherence to biopsy guidelines for Barrett’s esophagus surveillance in the community setting in the United States. Clin Gastroenterol Hepatol. 2009;7(7):736–42.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dunbar KB, Okolo 3rd P, Montgomery E, Canto MI. Confocal laser endomicroscopy in Barrett’s esophagus and endoscopically inapparent Barrett’s neoplasia: a prospective, randomized, double-blind, controlled, crossover trial. Gastrointest Endosc. 2009;70(4):645–54.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sharma P, Meining AR, Coron E, Lightdale CJ, Wolfsen HC, Bansal A, et al. Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial. Gastrointest Endosc. 2011;74(3):465–72.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Canto MI, Anandasabapathy S, Brugge W, Falk GW, Dunbar KB, Zhang Z, et al. In vivo endomicroscopy improves detection of Barrett’s esophagus-related neoplasia: a multicenter international randomized controlled trial (with video). Gastrointest Endosc. 2014;79(2):211–21.

    Article  PubMed  Google Scholar 

  12. Berzosa M, Wallace MB. Surveillance of Barrett’s esophagus: why biopsy if you can endomicroscopy. Gastrointest Endosc. 2014;79(2):222–3.

    Article  PubMed  Google Scholar 

  13. Wang KK, Carr-Locke DL, Singh SK, Neumann H, Bertani H, Galmiche J-P, et al. Use of probe-based confocal laser endomicroscopy (pCLE) in gastrointestinal applications. A consensus report based on clinical evidence. United Eur Gastroenterol J. 2015;3(3):230–54.

    Article  Google Scholar 

  14. Sharma P, Savides TJ, Canto MI, Corley DA, Falk GW, Goldblum JR, et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and incorporation of valuable endoscopic innovations) on imaging in Barrett’s esophagus. Gastrointest Endosc. 2012;76(2):252–4.

    Article  PubMed  Google Scholar 

  15. Johnson EA, De Lee R, Agni R, Pfau P, Reichelderfer M, Gopal DV. Probe-based confocal laser endomicroscopy to guide real-time endoscopic therapy in Barrett’s esophagus with dysplasia. Case Rep Gastroenterol. 2012;6(2):285–92.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wallace MB, Crook JE, Saunders M, Lovat L, Coron E, Waxman I, et al. Multicenter, randomized, controlled trial of confocal laser endomicroscopy assessment of residual metaplasia after mucosal ablation or resection of GI neoplasia in Barrett’s esophagus. Gastrointest Endosc. 2012;76(3):539–47. e1.

    Article  PubMed  Google Scholar 

  17. Gray NA, Odze RD, Spechler SJ. Buried metaplasia after endoscopic ablation of Barrett’s esophagus: a systematic review. Am J Gastroenterol. 2011;106(11):1899–908. quiz 909.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kapadia CR. Gastric atrophy, metaplasia, and dysplasia: a clinical perspective. J Clin Gastroenterol. 2003;36(5 Suppl):S29–36. discussion S61-2.

    Article  PubMed  Google Scholar 

  19. Yoon H, Kim N. Diagnosis and management of high risk group for gastric cancer. Gut Liver. 2015;9:5–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dinis-Ribeiro M, Areia M, de Vries AC, Marcos-Pinto R, Monteiro-Soares M, O’Connor A, et al. Management of precancerous conditions and lesions in the stomach (MAPS): guideline from the European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter Study Group (EHSG), European Society of Pathology (ESP), and the Sociedade Portuguesa de Endoscopia Digestiva (SPED). Endoscopy. 2012;44(1):74–94.

    Article  CAS  PubMed  Google Scholar 

  21. Lee KS, Oh DK, Han MA, Lee HY, Jun JK, Choi KS, et al. Gastric cancer screening in Korea: report on the national cancer screening program in 2008. Cancer Res Treat. 2011;43(2):83–8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ezoe Y, Muto M, Horimatsu T, Minashi K, Yano T, Sano Y, et al. Magnifying narrow-band imaging versus magnifying white-light imaging for the differential diagnosis of gastric small depressive lesions: a prospective study. Gastrointest Endosc. 2010;71(3):477–84.

    Article  PubMed  Google Scholar 

  23. Areia M, Amaro P, Dinis-Ribeiro M, Cipriano MA, Marinho C, Costa-Pereira A, et al. External validation of a classification for methylene blue magnification chromoendoscopy in premalignant gastric lesions. Gastrointest Endosc. 2008;67(7):1011–8.

    Article  PubMed  Google Scholar 

  24. Zhang JN, Li YQ, Zhao YA, Yu T, Zhang JP, Guo YT, et al. Classification of gastric pit patterns by confocal endomicroscopy. Gastrointest Endosc. 2008;67:843–53.

    Article  PubMed  Google Scholar 

  25. Guo YT, Li YQ, Yu T, Zhang TG, Zhang JN, Liu H, et al. Diagnosis of gastric intestinal metaplasia with confocal laser endomicroscopy in vivo: a prospective study. Endoscopy. 2008;40(7):547–53.

    Article  PubMed  Google Scholar 

  26. Bok GH, Jeon SR, Cho JY, Cho JH, Lee WC, Jin SY, et al. The accuracy of probe-based confocal endomicroscopy versus conventional endoscopic biopsies for the diagnosis of superficial gastric neoplasia (with videos). Gastrointest Endosc. 2013;77(6):899–908.

    Article  PubMed  Google Scholar 

  27. Shahid MW, Buchner AM, Coron E, Woodward TA, Raimondo M, Dekker E, et al. Diagnostic accuracy of probe-based confocal laser endomicroscopy in detecting residual colorectal neoplasia after EMR: a prospective study. Gastrointest Endosc. 2012;75:525–33.

    Article  PubMed  Google Scholar 

  28. Larghi A, Waxman I. Endoscopic mucosal resection: treatment of neoplasia. Gastrointest Endosc Clin N Am. 2005;15:431–54. viii.

    Article  PubMed  Google Scholar 

  29. Khashab M, Eid E, Rusche M, Rex DK. Incidence and predictors of “late” recurrences after endoscopic piecemeal resection of large sessile adenomas. Gastrointest Endosc. 2009;70:344–9.

    Article  PubMed  Google Scholar 

  30. Winawer SJ, Zauber AG, Fletcher RH, Stillman JS, O’Brien MJ, Levin B, et al. Guidelines for colonoscopy surveillance after polypectomy: a consensus update by the US Multi-Society Task Force on Colorectal Cancer and the American Cancer Society. CA Cancer J Clin. 2006;56:143–59. quiz 84–5.

    Article  PubMed  Google Scholar 

  31. Vaughn BP, Shah S, Cheifetz AS. The role of mucosal healing in the treatment of patients with inflammatory bowel disease. Curr Treat Options Gastroenterol. 2014;12(1):103–17.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Neumann H, Coron E, Mönkemüller K, Neurath MF, Vieth M. 702 Development of a new classification for confocal LASER endomicroscopy in IBD. Gastrointest Endosc. 2013;77(5):AB163.

    Google Scholar 

  33. Neumann H, Vieth M, Atreya R, Grauer M, Siebler J, Bernatik T, et al. Assessment of Crohn’s disease activity by confocal laser endomicroscopy. Inflamm Bowel Dis. 2012;18(12):2261–9.

    Article  PubMed  Google Scholar 

  34. Kiesslich R, Goetz M, Lammersdorf K, Schneider C, Burg J, Stolte M, et al. Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis. Gastroenterology. 2007;132:874–82.

    Article  PubMed  Google Scholar 

  35. Li CQ, Xie XJ, Yu T, Gu XM, Zuo XL, Zhou CJ, et al. Classification of inflammation activity in ulcerative colitis by confocal laser endomicroscopy. Am J Gastroenterol. 2010;105:1391–6.

    Article  PubMed  Google Scholar 

  36. Tytgat GN, Dhir V, Gopinath N. Endoscopic appearance of dysplasia and cancer in inflammatory bowel disease. Eur J Cancer. 1995;31A(7–8):1174–7.

    Article  CAS  PubMed  Google Scholar 

  37. Itzkowitz SH, Harpaz N. Diagnosis and management of dysplasia in patients with inflammatory bowel diseases. Gastroenterology. 2004;126:1634–48.

    Article  PubMed  Google Scholar 

  38. Leighton JA, Shen B, Baron TH, Adler DG, Davila R, Egan JV, et al. ASGE guideline: endoscopy in the diagnosis and treatment of inflammatory bowel disease. Gastrointest Endosc. 2006;63:558–65.

    Article  PubMed  Google Scholar 

  39. Li Z, Zuo XL, Li CQ, Zhou CJ, Liu J, Goetz M, et al. In vivo molecular imaging of gastric cancer by targeting MG7 antigen with confocal laser endomicroscopy. Endoscopy. 2013;45(2):79–85.

    Article  PubMed  Google Scholar 

  40. Hsiung PL, Hardy J, Friedland S, Soetikno R, Du CB, Wu AP, et al. Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat Med. 2008;14(4):454–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sturm MB, Joshi BP, Lu S, Piraka C, Khondee S, Elmunzer BJ, et al. Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results. Sci Transl Med. 2013;5(184). 184ra61.

    Google Scholar 

  42. Foersch S, Kiesslich R, Waldner MJ, Delaney P, Galle PR, Neurath MF, et al. Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy. Gut. 2010;59(8):1046–55.

    Article  PubMed  Google Scholar 

  43. Cartana T, Saftoiu A, Gruionu LG, Gheonea DI, Pirici D, Georgescu CV, et al. Confocal laser endomicroscopy for the morphometric evaluation of microvessels in human colorectal cancer using targeted anti-CD31 antibodies. PLoS One. 2012;7, e52815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lightdale CJ. Esophageal cancer. American College of Gastroenterology. Am J Gastroenterol. 1999;94:20–9.

    Article  CAS  PubMed  Google Scholar 

  45. Mori M, Adachi Y, Matsushima T, Matsuda H, Kuwano H, Sugimachi K. Lugol staining pattern and histology of esophageal lesions. Am J Gastroenterol. 1993;88(5):701–5.

    CAS  PubMed  Google Scholar 

  46. Deinert K, Kiesslich R, Vieth M, Neurath MF, Neuhaus H. In-vivo microvascular imaging of early squamous-cell cancer of the esophagus by confocal laser endomicroscopy. Endoscopy. 2007;39(4):366–8.

    Article  CAS  PubMed  Google Scholar 

  47. Liu H, Li YQ, Yu T, Zhao YA, Zhang JP, Zuo XL, et al. Confocal laser endomicroscopy for superficial esophageal squamous cell carcinoma. Endoscopy. 2009;41(2):99–106.

    Article  CAS  PubMed  Google Scholar 

  48. Pech O, Rabenstein T, Manner H, Petrone MC, Pohl J, Vieth M, et al. Confocal laser endomicroscopy for in vivo diagnosis of early squamous cell carcinoma in the esophagus. Clin Gastroenterol Hepatol. 2008;6:89–94.

    Article  PubMed  Google Scholar 

  49. Rex DK, Kahi C, O’Brien M, Levin TR, Pohl H, Rastogi A, et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and incorporation of valuable endoscopic innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2011;73:419–22.

    Article  PubMed  Google Scholar 

  50. Levin TR, Zhao W, Conell C, Seeff LC, Manninen DL, Shapiro JA, et al. Complications of colonoscopy in an integrated health care delivery system. Ann Intern Med. 2006;145(12):880–6.

    Article  PubMed  Google Scholar 

  51. Rex DK, Johnson DA, Anderson JC, Schoenfeld PS, Burke CA, Inadomi JM. American College of Gastroenterology guidelines for colorectal cancer screening 2009 [corrected]. Am J Gastroenterol. 2009;104:739–50.

    Article  PubMed  Google Scholar 

  52. Abu Dayyeh BK, Thosani N, Konda V, Wallace MB, Rex DK, Chauhan SS, et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE PIVI thresholds for adopting real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2015;81(3):502. e1–e16.

    Article  PubMed  Google Scholar 

  53. Buchner AM, Shahid MW, Heckman MG, Krishna M, Ghabril M, Hasan M, et al. Comparison of probe-based confocal laser endomicroscopy with virtual chromoendoscopy for classification of colon polyps. Gastroenterology. 2010;138(3):834–42.

    Article  PubMed  Google Scholar 

  54. Shahid MW, Buchner AM, Raimondo M, Woodward TA, Krishna M, Wallace MB. Accuracy of real-time vs. blinded offline diagnosis of neoplastic colorectal polyps using probe-based confocal laser endomicroscopy: a pilot study. Endoscopy. 2012;44(4):343–8.

    Article  CAS  PubMed  Google Scholar 

  55. Kuiper T, van den Broek FJ, van Eeden S, Fockens P, Dekker E. Feasibility and accuracy of confocal endomicroscopy in comparison with narrow-band imaging and chromoendoscopy for the differentiation of colorectal lesions. Am J Gastroenterol. 2012;107(4):543–50.

    Article  CAS  PubMed  Google Scholar 

  56. Shahid MW, Buchner AM, Heckman MG, Krishna M, Raimondo M, Woodward T, et al. Diagnostic accuracy of probe-based confocal laser endomicroscopy and narrow band imaging for small colorectal polyps: a feasibility study. Am J Gastroenterol. 2012;107:231–9.

    Article  PubMed  Google Scholar 

  57. Ignjatovic A, East JE, Suzuki N, Vance M, Guenther T, Saunders BP. Optical diagnosis of small colorectal polyps at routine colonoscopy (Detect InSpect ChAracterise Resect and Discard; DISCARD trial): a prospective cohort study. Lancet Oncol. 2009;10:1171–8.

    Article  PubMed  Google Scholar 

  58. Andre B, Vercauteren T, Buchner AM, Krishna M, Ayache N, Wallace MB. Software for automated classification of probe-based confocal laser endomicroscopy videos of colorectal polyps. World J Gastroenterol. 2012;18(39):5560–9.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liu JJ, Madsen KL, Boulanger P, Dieleman LA, Meddings J, Fedorak RN. Mind the gaps: confocal endomicroscopy showed increased density of small bowel epithelial gaps in inflammatory bowel disease. J Clin Gastroenterol. 2011;45(3):240–5.

    Article  PubMed  Google Scholar 

  60. Liu JJ, Wong K, Thiesen AL, Mah SJ, Dieleman LA, Claggett B, et al. Increased epithelial gaps in the small intestines of patients with inflammatory bowel disease: density matters. Gastrointest Endosc. 2011;73(6):1174–80.

    Article  PubMed  Google Scholar 

  61. Turcotte JF, Wong K, Mah SJ, Dieleman LA, Kao D, Kroeker K, et al. Increased epithelial gaps in the small intestine are predictive of hospitalization and surgery in patients with inflammatory bowel disease. Clin Transl Gastroenterol. 2012;3, e19.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kiesslich R, Duckworth CA, Moussata D, Gloeckner A, Lim LG, Goetz M, et al. Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease. Gut. 2012;61:1146–53.

    Article  CAS  PubMed  Google Scholar 

  63. Atreya R, Neumann H, Neufert C, Waldner MJ, Billmeier U, Zopf Y, et al. In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease. Nat Med. 2014;20(3):313–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chutkan RK, Scherl E, Waye JD. Colonoscopy in inflammatory bowel disease. Gastrointest Endosc Clin N Am. 2002;12(3):463–83. viii.

    Article  PubMed  Google Scholar 

  65. Tontini GE, Mudter J, Vieth M, Atreya R, Gunther C, Zopf Y, et al. Confocal laser endomicroscopy for the differential diagnosis of ulcerative colitis and Crohn’s disease: a pilot study. Endoscopy. 2015;47(5):437–43.

    PubMed  Google Scholar 

  66. Turcotte JF, Kao D, Mah SJ, Claggett B, Saltzman JR, Fedorak RN, et al. Breaks in the wall: increased gaps in the intestinal epithelium of irritable bowel syndrome patients identified by confocal laser endomicroscopy (with videos). Gastrointest Endosc. 2013;77(4):624–30.

    Article  PubMed  Google Scholar 

  67. Fritscher-Ravens A, Schuppan D, Ellrichmann M, Schoch S, Rocken C, Brasch J, et al. Confocal endomicroscopy shows food-associated changes in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology. 2014;147(5):1012–20. e4.

    Article  PubMed  Google Scholar 

  68. National Institutes of Health Consensus development conference statement on celiac disease, June 28–30, 2004. Gastroenterology. 2005;128:S1–9.

    Google Scholar 

  69. Leong RW, Nguyen NQ, Meredith CG, Al-Sohaily S, Kukic D, Delaney PM, et al. In vivo confocal endomicroscopy in the diagnosis and evaluation of celiac disease. Gastroenterology. 2008;135:1870–6.

    Article  PubMed  Google Scholar 

  70. Venkatesh K, Cohen M, Evans C, Delaney P, Thomas S, Taylor C, et al. Feasibility of confocal endomicroscopy in the diagnosis of pediatric gastrointestinal disorders. World J Gastroenterol. 2009;15(18):2214–9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Venkatesh K, Abou-Taleb A, Cohen M, Evans C, Thomas S, Oliver P, et al. Role of confocal endomicroscopy in the diagnosis of celiac disease. J Pediatr Gastroenterol Nutr. 2010;51(3):274–9.

    PubMed  Google Scholar 

  72. Hoffman A, Goetz M, Vieth M, Galle PR, Neurath MF, Kiesslich R. Confocal laser endomicroscopy: technical status and current indications. Endoscopy. 2006;38(12):1275–83.

    Article  CAS  PubMed  Google Scholar 

  73. Wallace MB, Meining A, Canto MI, Fockens P, Miehlke S, Roesch T, et al. The safety of intravenous fluorescein for confocal laser endomicroscopy in the gastrointestinal tract. Aliment Pharmacol Ther. 2010;31:548–52.

    Article  CAS  PubMed  Google Scholar 

  74. Sharman MJ, Mansfield CS, Whittem T. The exogenous fluorophore, fluorescein, enables in vivo assessment of the gastrointestinal mucosa via confocal endomicroscopy: optimization of intravenous dosing in the dog model. J Vet Pharmacol Ther. 2013;36(5):450–5.

    Article  CAS  PubMed  Google Scholar 

  75. Becker V, von Delius S, Bajbouj M, Karagianni A, Schmid RM, Meining A. Intravenous application of fluorescein for confocal laser scanning microscopy: evaluation of contrast dynamics and image quality with increasing injection-to-imaging time. Gastrointest Endosc. 2008;68:319–23.

    Article  PubMed  Google Scholar 

  76. Shahid MW, Crook JE, Meining A, Perchant A, Buchner A, Gomez V, et al. Exploring the optimal fluorescein dose in probe-based confocal laser endomicroscopy for colonic imaging. J Interv Gastroenterol. 2011;1(4):166–71.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Coron E, Mosnier JF, Ahluwalia A, Le Rhun M, Galmiche JP, Tarnawski AS, et al. Colonic mucosal biopsies obtained during confocal endomicroscopy are pre-stained with fluorescein in vivo and are suitable for histologic evaluation. Endoscopy. 2012;44(2):148–53.

    Article  CAS  PubMed  Google Scholar 

  78. Kiesslich R, Gossner L, Goetz M, Dahlmann A, Vieth M, Stolte M, et al. In vivo histology of Barrett’s esophagus and associated neoplasia by confocal laser endomicroscopy. Clin Gastroenterol Hepatol. 2006;4:979–87.

    Article  PubMed  Google Scholar 

  79. Gaddam S, Mathur SC, Singh M, Arora J, Wani SB, Gupta N, et al. Novel probe-based confocal laser endomicroscopy criteria and interobserver agreement for the detection of dysplasia in Barrett’s esophagus. Am J Gastroenterol. 2011;106(11):1961–9.

    Article  PubMed  Google Scholar 

  80. Wallace M. et al. Miami classification for probe-based confocal laser endomicroscopy. 2011;43(10):882–91.

    CAS  Google Scholar 

  81. Ha SO, Kim DY, Sohn CH, Lim KS. Anaphylaxis caused by intravenous fluorescein: clinical characteristics and review of literature. Intern Emerg Med. 2014;9(3):325–30.

    Article  PubMed  Google Scholar 

  82. Hassan C, Pickhardt PJ, Rex DK. A resect and discard strategy would improve cost-effectiveness of colorectal cancer screening. Clin Gastroenterol Hepatol. 2010;8:865–9. 9 e1–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish K. Singh M.D., A.G.A.F. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Atkinson, C.D., Singh, S.K. (2016). Luminal Confocal Laser Endomicroscopy. In: Konda, V., Waxman, I. (eds) Endoscopic Imaging Techniques and Tools. Springer, Cham. https://doi.org/10.1007/978-3-319-30053-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30053-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30051-1

  • Online ISBN: 978-3-319-30053-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics