Skip to main content

TVL\({}_1\) Planarity Regularization for 3D Shape Approximation

  • Conference paper
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2015)

Abstract

The modern emergence of automation in many industries has given impetus to extensive research into mobile robotics. Novel perception technologies now enable cars to drive autonomously, tractors to till a field automatically and underwater robots to construct pipelines. An essential requirement to facilitate both perception and autonomous navigation is the analysis of the 3D environment using sensors like laser scanners or stereo cameras. 3D sensors generate a very large number of 3D data points when sampling object shapes within an environment, but crucially do not provide any intrinsic information about the environment which the robots operate within.

This work focuses on the fundamental task of 3D shape reconstruction and modelling from 3D point clouds. The novelty lies in the representation of surfaces by algebraic functions having limited support, which enables the extraction of smooth consistent implicit shapes from noisy samples with a heterogeneous density. The minimization of total variation of second differential degree makes it possible to enforce planar surfaces which often occur in man-made environments. Applying the new technique means that less accurate, low-cost 3D sensors can be employed without sacrificing the 3D shape reconstruction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agoston, M.: Computer Graphics and Geometric Modelling: Implementation & Algorithms, 1st edn. Springer, London (2005)

    MATH  Google Scholar 

  2. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Point set surfaces. In: Proceedings of the Conference on Visualization 2001, VIS 2001, pp. 21–28. IEEE Computer Society, Washington, DC, USA (2001)

    Google Scholar 

  3. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering point set surfaces. IEEE Trans. Vis. Comput. Graph. 9(1), 3–15 (2003)

    Article  Google Scholar 

  4. Alizadeh, F., Alizadeh, F., Goldfarb, D., Goldfarb, D.: Second-order cone programming. Math. Program. 95, 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bach, F.R., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing penalties. Found. Trends Mach. Learn. 4(1), 1–106 (2012)

    Article  MATH  Google Scholar 

  6. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 5(4), 349–359 (1999)

    Article  Google Scholar 

  7. BodenmĂĽller, T.: Streaming surface reconstruction from real time 3D-measurements. Ph.D. thesis, Technical University Munich (2009)

    Google Scholar 

  8. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  9. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Img. Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bregman, L.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  11. Calakli, F., Taubin, G.: SSD: smooth signed distance surface reconstruction. Comput. Graph. Forum 30(7), 1993–2002 (2011)

    Article  Google Scholar 

  12. Canelhas, D.R.: Scene representation, registration and object detection in a truncated signed distance function representation of 3D space. Ph.D. thesis, Ă–rebro University (2012)

    Google Scholar 

  13. Canelhas, D.R., Stoyanov, T., Lilienthal, A.J.: SDF tracker: a parallel algorithm for on-line pose estimation and scene reconstruction from depth images. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3671–3676. IEEE (2013)

    Google Scholar 

  14. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, pp. 67–76. ACM, New York, NY, USA (2001)

    Google Scholar 

  15. Chen, X., Lin, Q., Kim, S., Peña, J., Carbonell, J.G., Xing, E.P.: An efficient proximal-gradient method for single and multi-task regression with structured sparsity. CoRR, abs/1005.4717 (2010)

  16. Duchon, J.: Splines minimizing rotation-invariant semi-norms in sobolev spaces. In: Schempp, W., Zeller, K. (eds.) Constructive Theory of Functions of Several Variables. Lecture Notes in Mathematics, vol. 571, pp. 85–100. Springer, Berlin (1977)

    Chapter  Google Scholar 

  17. Dykstra, R.: An algorithm for restricted least squares regression. Technical report, Mathematical Sciences. University of Missouri-Columbia, Department of Statistics (1982)

    Google Scholar 

  18. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graph. 13(1), 43–72 (1994)

    Article  MATH  Google Scholar 

  19. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32, 407–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Friedman, J.H., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)

    Article  Google Scholar 

  21. Getreuer, P.: Rudin-Osher-Fatemi total variation denoising using split bregman. Image Process. On Line 2, 74–95 (2012)

    Article  Google Scholar 

  22. Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. SIAM J. Img. Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gomes, A., Voiculescu, I., Jorge, J., Wyvill, B., Galbraith, C.: Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms, 1st edn. Springer Publishing Company, London (2009)

    Book  MATH  Google Scholar 

  24. Guennebaud, G., Gross, M.: Algebraic point set surfaces. ACM Trans. Graph. 26(3), July 2007

    Google Scholar 

  25. Hägele, M.: Wirtschaftlichkeitsanalysen neuartiger Servicerobotik-Anwendungen und ihre Bedeutung für die Robotik-Entwicklung (2011)

    Google Scholar 

  26. Hirschmüller, H.: Semi-global matching - motivation, developments and applications. In: Fritsch, D. (ed.) Photogrammetric Week, pp. 173–184. Wichmann, Heidelberg (2011)

    Google Scholar 

  27. Hughes, J., Foley, J., van Dam, A., Feiner, S.: Computer Graphics: Principles and Practice. The Systems Programming Series. Addison-Wesley, Boston (2014)

    MATH  Google Scholar 

  28. Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Trans. Graph. 32(3), 29:1–29:13 (2013)

    Article  MATH  Google Scholar 

  29. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.-P.: Multi-level partition of unity implicits. ACM Trans. Graph. 22(3), 463–470 (2003)

    Article  Google Scholar 

  30. Open Source Community. Blender, open source film production software (2014). http://blender.org. Accessed on 6 June 2014

  31. Oztireli, C., Guennebaud, G., Gross, M.: Feature preserving point set surfaces based on non-linear kernel regression. Comput. Graph. Forum 28(2), 493–501 (2009)

    Article  Google Scholar 

  32. Piegl, L., Tiller, W.: The NURBS Book. Monographs in Visual Communication. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  33. Rogers, D.F.: Preface. In: Rogers, D.F. (ed.) An Introduction to NURBS. The Morgan Kaufmann Series in Computer Graphics, pp. 105–107. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  34. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  36. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  37. Tennakoon, R., Bab-Hadiashar, A., Suter, D., Cao, Z.: Robust data modelling using thin plate splines. In: 2013 International Conference on Digital Image Computing, Techniques and Applications (DICTA), pp. 1–8. November 2013

    Google Scholar 

  38. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B 58, 267–288 (1994)

    MathSciNet  MATH  Google Scholar 

  39. Wahba, G.: Spline models for observational data, vol. 59 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1990)

    Google Scholar 

  40. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  42. Wolff, D.: OpenGL 4 Shading Language Cookbook, 2nd edn. Packt Publishing, Birmingham (2013)

    Google Scholar 

  43. Zach, C., Pock, T., Bischof, H.: A globally optimal algorithm for robust TV-L1 range image integration. In: IEEE 11th International Conference on Computer Vision, 2007, ICCV 2007, pp. 1–8, October 2007

    Google Scholar 

  44. Zhao, H., Oshery, S., Fedkiwz, R.: Fast surface reconstruction using the level set method. In: Proceedings of the IEEE Workshop on Variational and Level Set Methods, VLSM 2001 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugen Funk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Funk, E., Dooley, L.S., Börner, A. (2016). TVL\({}_1\) Planarity Regularization for 3D Shape Approximation. In: Braz, J., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2015. Communications in Computer and Information Science, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-319-29971-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29971-6_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29970-9

  • Online ISBN: 978-3-319-29971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics