Skip to main content

Sustainability in Energy Technologies

  • Chapter
  • First Online:
Energy

Part of the book series: Green Energy and Technology ((GREEN))

  • 3271 Accesses

Abstract

Energy demand continues to grow worldwide while extraction of fossil fuels becomes more difficult and expensive. The ways we produce, convert, store, and use energy are changing earth’s climate and affecting environment and hence the ways of human life as well as the next generation’s future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alhajji M, Demirel Y (2015) Energy and environmental sustainability assessment of crude oil refinery by thermodynamic analysis. Int J Energy Res 39:1925–1941

    Article  Google Scholar 

  2. Alhajji M, Demirel Y (2015) Energy intensity and environmental impact metrics of the back-end separation of ethylene plant by thermodynamic analysis. Int J Energy Environ Eng. doi:10.1007/s40095-015-0194-9

    Google Scholar 

  3. Annual Energy Outlook (AEO) with projections to 2040. U.S DOE/ Energy Information Administration -0383(2015), April 2015

    Google Scholar 

  4. Armstrong K, Styring P (2015) Assessing the potential of utilization and storage strategies for post-combustion CO2 emission reduction. Front Energy Res 3:1–9

    Article  Google Scholar 

  5. Aspen Technology, Inc. Burlington, MA, USA; 2014

    Google Scholar 

  6. Azapagic A, Emsley A, Hamerton L (2003) Definition of environmental impacts, in polymers, the environment and sustainable development. Wiley, Chichester

    Book  Google Scholar 

  7. Bhattacharjee U (2014) Life cycle costing: electric power projects. In: Anwar S (ed.) (2014) Encyclopedia of energy engineering and technology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  8. Beggs C (2009) Energy: management, supply and conservation, 2nd edn. Elsevier, London

    Google Scholar 

  9. Bettencourt LMA, Kaur J (2011) Evolution and structure of sustainability science. Proc Natl Acad Sci USA 108:19540–19545

    Article  Google Scholar 

  10. Blewitt J (2008) Understanding sustainable development. Earthscan, London

    Google Scholar 

  11. Burkhardt JJ, Heath GA, Turchi CS (2011) Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives. Environ Sci Technol 45:2457–2464

    Article  Google Scholar 

  12. Chen G, Maraseni TN, Yang Z (2014) Lifecycle Energy and Carbon Footprint: Agricultural and Food Products. In: Anwar S (ed) Encyclopedia of energy engineering and technology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  13. Chislock MF, Doster E, Zitomer RA, Wilson AE (2013) Eutrophication: causes, consequences, and controls in aquatic ecosystems. Nat Educ Knowl 4:10

    Google Scholar 

  14. Cuellar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilization technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 9:82–102

    Google Scholar 

  15. Curran MA (2015) Life Cycle Assessment: A Systems approach to environmental management and sustainability, CEP October

    Google Scholar 

  16. Demirel Y (2013) Sustainable distillation column operations. Chem Eng Process Techniques 1005:1–15

    Google Scholar 

  17. Demirel Y (2014) Nonequilibrium Thermodynamics: transport and rate processes in physical, chemical and biological systems, 3rd edn. Elsevier, Amsterdam

    MATH  Google Scholar 

  18. Demirel Y (2015) Sustainability and economic analysis of propylene carbonate and polypropylene carbonate production process using CO2 and propylene oxide. Chem Eng Process Technol 6:236. doi:10.4172/2157-7048.1000236

  19. Demirel Y, Matzen M, Winters C, Gao X (2015) Capturing and using CO2 as feedstock with chemical-looping and hydrothermal technologies and sustainability metrics. Int J Energy Res 39:1011–1047

    Article  Google Scholar 

  20. Dincer I, Ratlamwala TAH (2013) Development of novel renewable energy based hydrogen production systems: a comparative study. Int J Hydrog Energy 72:77–87

    Google Scholar 

  21. Dingizian A, Hansson J, Persson T, Ekberg HS, Tuna PA (2007) Feasibility Study on Integrated Hydrogen Production Presented to Norsk Hydro ASA Norway

    Google Scholar 

  22. Dodds WK et al (2009) Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 43:12–19

    Article  Google Scholar 

  23. ETB (2011) Engineering Tool Box in http://www.engineeringtoolbox.com, accessed in May 2014

  24. Fiksel J (2009) Design for Environment: A guide to sustainable product development, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  25. Finley R (2006) Illinois State geological survey. evaluation of CO2 capture options from ethanol plants

    Google Scholar 

  26. Galindo CP, Badr O (2007) Renewable hydrogen utilization for the production of methanol. Energy Convers Manag 48:519–527

    Article  Google Scholar 

  27. Hsu DD, Inman D, Heath GA, Wolfrum EJ, Mann MK, Aden A (2010) Life cycle environmental impacts of selected us ethanol production and use pathways in 2022. Environ Sci Technol 44:5289–5297

    Article  Google Scholar 

  28. International Organization for Standardization (2006) Environmental management---Life cycle assessment - Principles and framework, 2006. Geneva, International Organization for Standardization

    Google Scholar 

  29. Jacobson MZ (2009) Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci 2:148–173

    Article  Google Scholar 

  30. Kothari R, Buddhi D, Sawhney RIL (2008) Comparison of environmental and economic aspects of various hydrogen production methods. Renew Sustain Energy Rev 12:553–563

    Article  Google Scholar 

  31. Kowalski K, Stagl S, Madlener R, Oman I (2009) Sustainable energy futures: methodological challenges in combining scenarios and participatory multi-criteria analysis. Europ J Operat Res 197:1063–1074

    Article  Google Scholar 

  32. Kutscher CF (2007) (ed) Tackling climate change in the U.S., American Solar Energy Society, in www.ases.org/climatechange, accessed in May 2014

  33. Martins AA, Mata TM, Costa CAV, Sikdar SK (2007) Framework for sustainability metrics. Ind Eng Chem Res 46:2962–2973

    Article  Google Scholar 

  34. Matzen M, Alhajji M, Demirel Y (2015) Technoeconomics and sustainability of renewable methanol and ammonia productions using wind power –based hydrogen. Adv Chem Eng 5:128. doi:10.4172/2090-4568.1000128

    Google Scholar 

  35. Matzen M, Alhajji M, Demirel Y (2015) Chemical storage of wind energy by renewable methanol production: feasibility analysis using a multi-criteria decision matrix. Energy 93:343–353

    Article  Google Scholar 

  36. McCardell SB (2014) Effective Energy Use: Rewards and Excitement. In: Anwar S (ed.) Encyclopedia of energy engineering and technology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  37. McDonough W et al (2007) Applying the principles of green engineering to cradle-to-cradle design. Environ Sci Technol 37:434A–441A

    Article  Google Scholar 

  38. Meckstroth DJ (2015) An International Comparison of Pollution Abatement and Waste Management Costs, MAPI Foundation. https://www.mapi.net/research/publications/pollution-abatement

  39. Peterson MA (2014) Sustainable Development. In: Anwar S (ed) Encyclopedia of energy engineering and technology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  40. Pugh S (1981) Concept selection, a method that works. In: Hubka, V. (ed.), Review of design methodology. Proceedings international conference on engineering design, Rome. Zürich: Heurista, pp 497–506

    Google Scholar 

  41. Sathaye et al. (2011) Renewable energy in the context of sustainable development. In IPCC Special report on renewable energy sources and climate change mitigation. In: Edenhofer et al. (eds), Cambridge University Press, Cambridge, p 84. http://srren.ipcc-wg3.de/report/IPCC_SRREN_Ch09. pdf/

  42. Spath PL, Mann MK (2000) Life cycle assessment of a natural gas combined cycle power generation system, NREL/TP-57027715

    Google Scholar 

  43. Spath PL, Mann MK (2001) Life cycle assessment of biomass cofiring in a coal-fired power plant. Clean Prod Process. 3:81–91

    Article  Google Scholar 

  44. von der Assen N, Voll P, Peters M, Bardow A (2014) Life cycle assessment of CO2 capture and utilization: a tutorial review. Chem Soc Rev 43:7982–7994

    Article  Google Scholar 

  45. Wood MB (2014) Nuclear Energy: Technology. In: Anwar S (ed) Encyclopedia of energy engineering and technology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  46. World Energy Outlook 2015, International Energy Agency (IEA), 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaşar Demirel .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Demirel, Y. (2016). Sustainability in Energy Technologies. In: Energy. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-29650-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29650-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29648-7

  • Online ISBN: 978-3-319-29650-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics