Skip to main content

Vegetable Oil–Maleic Anhydride and Maleimide Derivatives: Syntheses and Properties

  • Chapter
  • First Online:
Handbook of Maleic Anhydride Based Materials

Abstract

The marriage of maleic anhydride and vegetable oils as a unique class of environmentally benign macromonomers and sustainable polymers has attracted a great deal of interests in the last few decades. The rich chemistry and versatile reactivity of maleic anhydride, combined with the biodegradable and renewable nature of vegetable oils, have rendered infinite possibilities for the maleic anhydride–vegetable oil derivatives. This section provides a survey of the recent literatures on the synthetic routes of the various maleic anhydride derivatives based on the reactive sites in the vegetable oil, as well as the properties and applications of these novel macromonomers and polymers.

Maleimides and derivatives are important building blocks in chemical synthesis, and some of them demonstrate biological activity. A special feature of the reactivity of maleimides is their susceptibility to additions across the double bond, either by Michael additions or via Diels–Alder reactions. The carbon–carbon double bond in maleimide is also capable of free-radical or anionic polymerization or copolymerization to produce functional polymers that are utilized in high temperature applications, such as adhesives in the semiconductor industry. Biological applications of maleimide derivatives result from their high and specific reactivity/binding toward the thiol groups in biological substrate (e.g., chemical probes), site-directed modification for proteins and peptides, bioconjugates, and prodrugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu Y, Larock RC (2009) Novel polymeric materials from vegetable oils and vinyl monomers: preparation, properties, and applications. ChemSusChem 2(2):136–147

    Article  CAS  Google Scholar 

  2. Miao S, Wang P, Su Z, Zhang S (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10(4):1692–1704

    Article  CAS  Google Scholar 

  3. Mazo P, Estenoz D, Sponton M, Rios L (2012) Kinetics of the transesterification of castor oil with maleic anhydride using conventional and microwave heating. J Am Oil Chem Soc 89(7):1355–1361

    CAS  Google Scholar 

  4. Saied MA, Mansour SH, Eweis M, El-Sabee MZ, Saad ALG, Abdel Nour KN (2008) Some biophysical properties of castor oil esterified with some acid anhydrides. Eur J Lipid Sci Technol 110(10):926–934

    Article  CAS  Google Scholar 

  5. Saied MA, Mansour SH, El Sabee MZ, Saad ALG, Abdel-Nour KN (2012) Some electrical and physical properties of castor oil adducts dissolved in 1-propanol. J Mol Liq 172:1–7

    Article  CAS  Google Scholar 

  6. Wang HJ, Rong MZ, Zhang MQ, Hu J, Chen HW, Czigany T (2008) Biodegradable foam plastics based on castor oil. Biomacromolecules 9(2):615–623

    Article  CAS  Google Scholar 

  7. Wang H, Rong M, Zhang M (2014) Plastic foams based on castor oil modified with the reaction product of maleic anhydride and β-hydroxyethyl acrylate. Gaofenzi Cailiao Kexue Yu Gongcheng 30(2):21–26

    Google Scholar 

  8. Sponton M, Casis N, Mazo P, Raud B, Simonetta A, Rios L, Estenoz D (2013) Biodegradation study by Pseudomonas sp. of flexible polyurethane foams derived from castor oil. Int Biodeterior Biodegrad 85:85–94

    Article  CAS  Google Scholar 

  9. Echeverri DA, Perez WA, Rios LA (2013) Maleinization of soybean oil glycerides obtained from biodiesel-derived crude glycerol. J Am Oil Chem Soc 90(12):1877–1882

    Article  CAS  Google Scholar 

  10. Echeverri DA, Jaramillo F, Rios LA (2015) Curing copolymerization kinetics of styrene with maleated castor oil glycerides obtained from biodiesel-derived crude glycerol. J Appl Polym Sci 132(4)

    Google Scholar 

  11. Echeverri DA, Perez WA, Rios LA (2013) Synthesis of maleated-castor oil glycerides from biodiesel-derived crude glycerol. Ind Crops Prod 49:299–303

    Article  CAS  Google Scholar 

  12. Can E, Wool RP, Kusefoglu S (2006) Soybean and castor oil based monomers: synthesis and copolymerization with styrene. J Appl Polym Sci 102(3):2433–2447

    Article  CAS  Google Scholar 

  13. Can E, Kusefoglu S, Wool RP (2001) Rigid, thermosetting liquid molding resins from renewable resources. I. Synthesis and polymerization of soybean oil monoglyceride maleates. J Appl Polym Sci 81(1):69–77

    Article  CAS  Google Scholar 

  14. Can E, Kusefoglu S, Wool RP (2002) Rigid thermosetting liquid molding resins from renewable resources. II. Copolymers of soybean oil monoglyceride maleates with neopentyl glycol and bisphenol A maleates. J Appl Polym Sci 83(5):972–980

    Article  CAS  Google Scholar 

  15. Bora MM, Gogoi P, Deka DC, Kakati DK (2014) Synthesis and characterization of yellow oleander (Thevetia peruviana) seed oil-based alkyd resin. Ind Crops Prod 52:721–728

    Article  CAS  Google Scholar 

  16. Bora MM, Deka R, Ahmed N, Kakati DK (2014) Karanja (Millettia pinnata (L.) Panigrahi) seed oil as a renewable raw material for the synthesis of alkyd resin. Ind Crops Prod 61:106–114

    Article  CAS  Google Scholar 

  17. Boruah M, Gogoi P, Adhikari B, Dolui SK (2012) Preparation and characterization of Jatropha curcas oil based alkyd resin suitable for surface coating. Prog Org Coat 74(3):596–602

    Article  CAS  Google Scholar 

  18. Dutta N, Karak N, Dolui SK (2004) Synthesis and characterization of polyester resins based on Nahar seed oil. Prog Org Coat 49(2):146–152

    Article  CAS  Google Scholar 

  19. Ahmad S, Ashraf SM, Zafar F (2007) Development of linseed oil based polyesteramide without organic solvent at lower temperature. J Appl Polym Sci 104(2):1143–1148

    Article  CAS  Google Scholar 

  20. Ahmad S, Ashraf SM, Naqvi F, Yadav S, Hasnat A (2003) A polyesteramide from Pongamia glabra oil for biologically safe anticorrosive coating. Prog Org Coat 47(2):95–102

    Article  CAS  Google Scholar 

  21. Mahapatra SS, Karak N (2004) Synthesis and characterization of polyesteramide resins from Nahar seed oil for surface coating applications. Prog Org Coat 51(2):103–108

    Article  CAS  Google Scholar 

  22. Pramanik S, Sagar K, Konwar BK, Karak N (2012) Synthesis, characterization and properties of a castor oil modified biodegradable poly(ester amide) resin. Prog Org Coat 75(4):569–578

    Article  CAS  Google Scholar 

  23. Pramanik S, Konwarh R, Sagar K, Konwar BK, Karak N (2013) Bio-degradable vegetable oil based hyperbranched poly(ester amide) as an advanced surface coating material. Prog Org Coat 76(4):689–697

    Article  CAS  Google Scholar 

  24. Thames SF, Smith OW, Evans JM, Dutta S, Chen L (2005) Functionalized vegetable oil derivatives used in latex and coating compositions and their preparation. US7361710

    Google Scholar 

  25. Musa OM, Shih JS (2010) Performance-boosting UV-absorbing compounds for personal care and performance compositions. US8557226

    Google Scholar 

  26. Candy L, Vaca-Garcia C, Borredon E (2005) Synthesis and characterization of oleic succinic anhydrides: structure-property relations. J Am Oil Chem Soc 82(4):271–277

    Article  CAS  Google Scholar 

  27. Tomoda H, Sugimoto Y, Tani Y, Watanabe S (1998) Characteristic properties of cutting fluid additives derived from the reaction products of hydroxyl fatty acids with some acid anhydrides. J Surfact Deterg 1(4):533–537

    Article  CAS  Google Scholar 

  28. Bertz SH, Miksza FM, Zucker E (2001) Adduct characterized by absence of free maleic anhydride; personal care products. 4p

    Google Scholar 

  29. Espana JM, Sanchez-Nacher L, Boronat T, Fombuena V, Balart R (2012) Properties of biobased epoxy resins from epoxidized soybean oil (ESBO) cured with maleic anhydride (MA). J Am Oil Chem Soc 89(11):2067–2075

    Article  CAS  Google Scholar 

  30. Gerbase AE, Petzhold CL, Costa APO (2002) Dynamic mechanical and thermal behavior of epoxy resins based on soybean oil. J Am Oil Chem Soc 79(8):797–802

    Article  CAS  Google Scholar 

  31. Samper MD, Fombuena V, Boronat T, Garcia-Sanoguera D, Balart R (2012) Thermal and mechanical characterization of epoxy resins (ELO and ESO) cured with anhydrides. J Am Oil Chem Soc 89(8):1521–1528

    CAS  Google Scholar 

  32. Huang Y, Pang L, Wang H, Zhong R, Zeng Z, Yang J (2013) Synthesis and properties of UV-curable tung oil based resins via modification of Diels-Alder reaction, nonisocyanate polyurethane and acrylates. Prog Org Coat 76(4):654–661

    Article  CAS  Google Scholar 

  33. Ge Q, Wang H, She Y, Jiang S, Cao M, Zhai L, Jiang S (2015) Synthesis, characterization, and properties of acrylate-modified tung-oil waterborne insulation varnish. J Appl Polym Sci 132(10):41608/1–41608/8

    Article  CAS  Google Scholar 

  34. Tran P, Seybold K, Graiver D, Narayan R (2005) Free radical maleation of soybean oil via a single-step process. J Am Oil Chem Soc 82(3):189–194

    Article  CAS  Google Scholar 

  35. Force CG, Starr FS (1988) Vegetable oil adducts as emollients in skin and hair care products. US4740367

    Google Scholar 

  36. Bidulescu G, Stere EA, Tarko L (1986) Manufacture of maleimides from aromatic primary amines. RO89171A2

    Google Scholar 

  37. Yamamoto T, Mizuno S, Watanabe M (1994) Preparation of N-arylmaleimides from maleic anhydride and aromatic amines. JP06184104A

    Google Scholar 

  38. Yamamoto T, Mizuno S, Watanabe M (1995) Preparation and purification of N-substituted maleimide. JP07109258A

    Google Scholar 

  39. Yamamoto T, Mizuno S, Watanabe M (1995) Preparation of maleimide derivatives. JP07053513A

    Google Scholar 

  40. Fujita T, Irie T, Takayanagi Y, Narita T, Yano Y (1989) Preparation of N-substituted maleimides. DE3905872A1

    Google Scholar 

  41. Sudo I, Watabe Y (1992) Preparation of maleimides. JP04198167A

    Google Scholar 

  42. Oonuma Y, Chiba H, Kanayama K (1994) Preparation of maleimides. JP06016627A

    Google Scholar 

  43. Ikeda I, Yamashita W, Tamai S (1998) Preparation of (poly)maleimides as monomers. JP10175952A

    Google Scholar 

  44. Le Z-G, Chen Z-C, Hu Y, Zheng Q-G (2004) Organic reactions in ionic liquids: ionic liquid-promoted efficient synthesis of N-alkyl and N-arylimides. Synthesis 7:995–998

    Google Scholar 

  45. Reddy PY, Kondo S, Toru T, Ueno Y (1997) Lewis acid and hexamethyldisilazane-promoted efficient synthesis of N-alkyl- and N-arylimide derivatives. J Org Chem 62(8):2652–2654

    Article  CAS  Google Scholar 

  46. Doi S, Takayanagi Y (1986) N-substituted maleimides. EP177031A1

    Google Scholar 

  47. Ueda H, Kita J, Kishino K (1993) Preparation of maleimides. JP05213869A

    Google Scholar 

  48. Wu K-C, Tung Y-L, Lee C-H, Dai J-C, Huang C-H (2003) Imidation method and catalysts for the production of maleimides from maleic anhydride and primary amines. US6630595

    Google Scholar 

  49. Manjula KS, Rai KML, Umesha KB, Babu MS, Jagadeesha RL (2003) Microwave-assisted synthesis of N-aryl maleimide under solvent free conditions. Bulg Chem Commun 35(3):192–194

    CAS  Google Scholar 

  50. Matsukawa M, Wada M, Minazu H, Furuya M, Nagata T (1991) Preparation of N-substituted maleimides. JP03011060A

    Google Scholar 

  51. Gaina V, Gaina C (2004) Dehydrochlorination of α-chlorosuccinimides, a new method for synthesis of high-purity maleimides. Mater Plast (Bucharest) 41(3):169–172

    CAS  Google Scholar 

  52. Walker MA (1994) The Mitsunobu reaction - a novel method for the synthesis of bifunctional maleimide linkers. Tetrahedron Lett 35(5):665–668

    Article  CAS  Google Scholar 

  53. Ahn KD, Koo DI, Willson CG (1995) Synthesis and polymerization of t-Boc protected maleimide monomers - N-(t-butyloxycarbonyloxy) maleimide and N-p-(t-butyloxycarbonyloxy) phenyl-maleimide. Polymer 36(13):2621–2628

    Article  CAS  Google Scholar 

  54. Wang ZY (1990) Syntheses of some N-alkylmaleimides. Synth Commun 20(11):1607–1610

    Article  CAS  Google Scholar 

  55. Katritzky AR, Fan WQ, Li QL, Bayyuk S (1989) Novel chromophoric heterocycles based on maleimide and naphthoquinone. J Heterocyc Chem 26(4):885–892

    Article  CAS  Google Scholar 

  56. Oishi T, Fujimoto M (1992) Synthesis and polymerization of N-4-N′-(alpha-methylbenzyl)aminocarbonylphenyl maleimide. J Polym Sci A Polym Chem 30(9):1821–1830

    Article  CAS  Google Scholar 

  57. Oishi T, Kagawa K, Fujimoto M (1993) Synthesis and polymerization of N-N′-(alpha-methylbenzyl)amino carbonyl methyl maleimide. Macromolecules 26(1):24–29

    Article  CAS  Google Scholar 

  58. Kitagawa O, Izawa H, Sato K, Dobashi A, Taguchi T, Shiro M (1998) Optically active axially chiral anilide and maleimide derivatives as new chiral reagents: synthesis and application to asymmetric Diels-Alder reaction. J Org Chem 63(8):2634–2640

    Article  CAS  Google Scholar 

  59. Yanase M, Kagawa T (2005) Optically active polymaleimides, their manufacture, and uses for separation of optically active compounds. JP2005255795A

    Google Scholar 

  60. Cai H, He XH, Zheng DY, Qiu JA, Li ZC, Li FM (1996) Vinyl monomers bearing chromophore moieties and their polymers. 2. Fluorescence and initiation behavior of N-(4-N′, N′-dimethylaminophenyl)maleimide and its polymer. J Polym Sci A Polym Chem 34(7):1245–1250

    Article  CAS  Google Scholar 

  61. Reddy PY, Kondo S, Fujita S, Toru T (1998) Efficient synthesis of fluorophore-linked maleimide derivatives. Synthesis 7:999–1002

    Article  Google Scholar 

  62. Palmer M, Buchkremer M, Valeva A, Bhakdi S (1997) Cysteine-specific radioiodination of proteins with fluorescein maleimide. Anal Biochem 253(2):175–179

    Article  CAS  Google Scholar 

  63. Majima E, Shinohara Y, Yamaguchi N, Hong YM, Terada H (1994) Importance of loops of mitochondrial ADP/ATP carrier for its transport activity deduced from reactivities of its cysteine residues with the sulfhydryl reagent eosin-5-maleimide. Biochemistry 33(32):9530–9536

    Article  CAS  Google Scholar 

  64. Houstek J, Pedersen PL (1985) Adenine nucleotide and phosphate transport systems of mitochondria. Relative location of sulfhydryl groups based on the use of the novel fluorescent probe eosin-5-maleimide. J Biol Chem 260(10):6288–6295

    CAS  Google Scholar 

  65. Liu SQJ, Knauf PA (1993) Lys-430, site of irreversible inhibition of band-3 Cl(-) flux by eosin-5-maleimide, is not at the transport site. Am J Physiol 264(5):C1155–C1164

    CAS  Google Scholar 

  66. Majima E, Koike H, Hong YM, Shinohara Y, Terada H (1993) Characterization of cysteine residues of mitochondrial ADP/ATP carrier with the SH-reagents eosin 5-maleimide and N-ethylmaleimide. J Biol Chem 268(29):22181–22187

    CAS  Google Scholar 

  67. Blackman SM, Cobb CE, Beth AH, Piston DW (1996) The orientation of eosin-5-maleimide on human erythrocyte band 3 measured by fluorescence polarization microscopy. Biophys J 71(1):194–208

    Article  CAS  Google Scholar 

  68. Kedar PS, Colah RB, Kulkarni S, Ghosh K, Mohanty D (2003) Experience with eosin-5′-maleimide as a diagnostic tool for red cell membrane cytoskeleton disorders. Clin Lab Haematol 25(6):373–376

    Article  CAS  Google Scholar 

  69. King MJ, Smythe JS, Mushens R (2004) Eosin-5-maleimide binding to band 3 and Rh-related proteins forms the basis of a screening test for hereditary spherocytosis. Br J Haematol 124(1):106–113

    Article  CAS  Google Scholar 

  70. Girodon F, Garcon L, Bergoin E, Largier M, Delaunay J, Feneant-Thibault M, Maynadie M, Couillaud G, Moreira S, Cynober T (2008) Usefulness of the eosin-5′-maleimide cytometric method as a first-line screening test for the diagnosis of hereditary spherocytosis: comparison with ektacytometry and protein electrophoresis. Br J Haematol 140(4):468–470

    Article  CAS  Google Scholar 

  71. Kamata T, Akasaka K, Ohrui H, Meguro H (1993) A sensitive fluorometric assay of glutathione reductase activity with N-(9-acridinyl)maleimide. Anal Sci 9(6):867–870

    Article  CAS  Google Scholar 

  72. Aykin N, Neal R, Yusof M, Ercal N (2001) Determination of captopril in biological samples by high performance liquid chromatography with ThioGlo(TM)3 derivatization. Biomed Chromatogr 15(7):427–432

    Article  CAS  Google Scholar 

  73. Penugonda S, Wu W, Mare S, Ercal N (2004) Liquid chromatography analysis of N-(2-mercaptopropionyl)-glycine in biological samples by ThioGlo 3 derivatization. J Chromatogr B Anal Technol Biomed Life Sci 807(2):251–256

    Article  CAS  Google Scholar 

  74. Mare S, Penugonda S, Ercal N (2005) High-performance liquid chromatography analysis of MESNA (2-mercaptoethane sulfonate) in biological samples using fluorescence detection. Biomed Chromatogr 19(1):80–86

    Article  CAS  Google Scholar 

  75. Nakashima K, Umekawa C, Yoshida H, Nakatsuji S, Akiyama S (1987) High-performance liquid chromatography-fluorometry for the determination of thiols in biological samples using N-4-(6-dimethylamino-2-benzofuranyl) phenyl-maleimide. J Chromatogr 414(1):11–17

    Article  CAS  Google Scholar 

  76. Lo KKW, Hui WK, Ng DCM, Cheung KK (2002) Synthesis, characterization, photophysical properties, and biological labeling studies of a series of luminescent rhenium(I) polypyridine maleimide complexes. Inorg Chem 41(1):40–46

    Article  CAS  Google Scholar 

  77. DiGleria K, Hill HAO, Wong LL (1996) N-(2-ferrocene-ethyl)maleimide: a new electroactive sulphydryl-specific reagent for cysteine-containing peptides and proteins. FEBS Lett 390(2):142–144

    Article  CAS  Google Scholar 

  78. Gandini A (2013) The furan/maleimide Diels-Alder reaction: a versatile click-unclick tool in macromolecular synthesis. Prog Polym Sci 38(1):1–29

    Article  CAS  Google Scholar 

  79. Durmaz H, Colakoclu B, Tunca U, Hizal G (2006) Preparation of block copolymers via diels alder reaction of maleimide- and anthracene-end functionalized polymers. J Polym Sci A Polym Chem 44(5):1667–1675

    Article  CAS  Google Scholar 

  80. Gacal B, Durmaz H, Tasdelen MA, Hizal G, Tunca U, Yagci Y, Demirel AL (2006) Anthracene-maleimide-based Diels-Alder “click chemistry” as a novel route to graft copolymers. Macromolecules 39(16):5330–5336

    Article  CAS  Google Scholar 

  81. Yameen B, Rodriguez-Emmenegger C, Preuss CM, Pop-Georgievski O, Verveniotis E, Trouillet V, Rezek B, Barner-Kowollik C (2013) A facile avenue to conductive polymer brushes via cyclopentadiene-maleimide Diels-Alder ligation. Chem Commun 49(77):8623–8625

    Article  CAS  Google Scholar 

  82. Liu YL, Yu JM, Chou CI (2004) Preparation and properties of novel benzoxazine and polybenzoxazine with maleimide groups. J Polym Sci A Polym Chem 42(23):5954–5963

    Article  CAS  Google Scholar 

  83. Ishida H, Ohba S (2005) Synthesis and characterization of maleimide and norbornene functionalized benzoxazines. Polymer 46(15):5588–5595

    Article  CAS  Google Scholar 

  84. Chaisuwan T, Ishida H (2006) High-performance maleimide and nitrile-functionalized benzoxazines with good processability for advanced composites applications. J Appl Polym Sci 101(1):548–558

    Article  CAS  Google Scholar 

  85. Musa OM, Xhang R, Zhang R Curable liquid composition used as adhesive or encapsulant for affixing semiconductor devices onto substrate, comprises bisoxazoline resin, and resin having one or more reactive carbon to carbon double bonds e.g. 1,6-hexanediol diacrylate. WO2005085384-A1; EP1716215-A1; US2007032578-A1; US7390430-B2; TW200606231-A; EP1716215-B1; DE602004027549-E; TW384045-B1; SG116203-B

    Google Scholar 

  86. Musa OM, Sridhar LM, Yuan-Huffman QW Synthesizing product having triazole functionality, useful in film adhesive, comprises bulk polymerization of reactants having e.g. azide functionality using copper without a reducing agent in the absence of solvent. WO2008048733-A1; TW200829625-A; EP2078050-A1; KR2009088371-A; JP2010506940-W; CN101652405-A; US2010121022-A1

    Google Scholar 

  87. Musa OM (2004) Cycloaliphatic epoxy compounds containing styrenic, cinnamyl, or maleimide functionality. US6716992

    Google Scholar 

  88. Musa OM (2008) Maleimide resin with cyanurate core. US7456280

    Google Scholar 

  89. Phelan JC, Sung CSP (1997) Cure characterization in bis(maleimide)/diallylbisphenol A resin by fluorescence, FT-IR, and UV-reflection spectroscopy. Macromolecules 30(22):6845–6851

    Article  CAS  Google Scholar 

  90. Marr B, Musa OM (2010) Diphenyl oxide compound for forming curable composition used as, e.g. coating, has diphenyl oxide backbone and pendant from backbone which is hydrocarbon chain containing ester functionality and terminated with maleimide functional group. US2010311207

    Google Scholar 

  91. Marr B, Musa OM, Zhuo Q (2009) Curable composition useful as adhesives, coatings, and encapsulants for various fabrication steps in the semiconductor packaging industry comprises oligomeric adduct of bismaleimide, diamine and dithiol; and a curing initiator. WO2009145779-A1

    Google Scholar 

  92. Olsen LC, Boyce BJ, Musa OM Vibrating screen assembly for separating e.g. rock in aggregate business, has screen deck and three cross braces diagonally disposed within frame, where one cross brace is positioned in center portion of deck to stiffen deck. US2004222135-A1; WO2004098797-A2; US6953121-B2; CN100344674-C; WO2004098797-A3

    Google Scholar 

  93. Musa OM, Marr B (2010) Alcohols containing imide moieties and reactive oligomers prepared therefrom. US20100190998-A1

    Google Scholar 

  94. Musa OM (2009) New oligomeric compound obtained by Michael addition reaction of a thiol with a maleimide compounds useful as a curable composition, adhesives, coatings and encapsulants, and for various fabrication steps in semiconductor packaging. US2010036136-A1

    Google Scholar 

  95. Molly H, Askym FS, Charles EH, Joe BW, Charles MW, Garfield TW (2005) Maleimide—Vinyl ether-based polymer dispersed liquid crystals, in stimuli-responsive polymeric films and coatings. American Chemical Society, Washington, DC, pp 195–213

    Google Scholar 

  96. Decker C, Bianchi C, Morel F, Jonsson S, Hoyle C (2000) Mechanistic study of the light-induced copolymerization of maleimide/vinyl ether systems. Macromol Chem Phys 201(13):1493–1503

    Article  CAS  Google Scholar 

  97. Hoyle CE, Clark SC, Jönsson ES (2005) Polymerization processes using aliphatic maleimides. Google Patents

    Google Scholar 

  98. Jonsson S, Viswanathan K, Hoyle CE, Clark SC, Miller C, Nguyen C, Zhao W, Shao L, Morel F, Decker C (2000) Recent development in free radical photopolymerization. Direct and sensitized excitation of maleimides. J Photopolym Sci Technol 13(1):125–143

    Article  CAS  Google Scholar 

  99. Fan SL, Boey FYC, Abadie MJM (2007) UV curing of a liquid based bismaleimide-containing polymer system. eXPRESS Polym Lett 1(6):397–405

    Article  CAS  Google Scholar 

  100. Hoyle CE, Viswanathan K, Clark SC, Miller CW, Nguyen C, Jonsson S, Shao LY (1999) Sensitized polymerization of an acrylate/maleimide system. Macromolecules 32(8):2793–2795

    Article  CAS  Google Scholar 

  101. Bongiovanni R, Sangermano M, Malucelli G, Priola A (2005) UV curing of photoinitiator-free systems containing bismaleimides and diacrylate resins: bulk and surface properties. Prog Org Coat 53(1):46–49

    Article  CAS  Google Scholar 

  102. Herr D, Schultz RA, Xu P, McLaughlin SR (2001) Die attach adhesives for use in microelectronic devices. US6265530

    Google Scholar 

  103. Dershem SM, Patterson DB, Osuna JA (2006) Maleimide compounds in liquid form. US7102015

    Google Scholar 

  104. Horai A, Funaki K (2002) Maleimides for photoresist monomers, and their manufacture. JP2002069056A

    Google Scholar 

  105. Osuch CE, McFarland MJ (1990) Blocked monomer and polymers therefrom for use as photoresists. US 4962171

    Google Scholar 

  106. Zhang X, Chen G-C, Collins A, Jacobson S, Morganelli P, Dar YL, Musa OM (2009) Thermally degradable maleimides for reworkable adhesives. J Polym Sci A Polym Chem 47(4):1073–1084

    Article  CAS  Google Scholar 

  107. Khosravi E, Musa OM (2011) Thermally degradable thermosetting materials. Eur Polym J 47(4):465–473

    Article  CAS  Google Scholar 

  108. Khosravi E, Iqbal F, Musa OM (2011) Thermosetting ROMP materials with thermally degradable linkages. Polymer 52(2):243–249

    Article  CAS  Google Scholar 

  109. Canary SA, Stevens MP (1992) Thermally reversible cross-linking of polystyrene via the furan-maleimide Diels-Alder reaction. J Polym Sci A Polym Chem 30(8):1755–1760

    Article  CAS  Google Scholar 

  110. McElhanon JR, Wheeler DR (2001) Thermally responsive dendrons and dendrimers based on reversible furan-maleimide Diels-Alder adducts. Org Lett 3(17):2681–2683

    Article  CAS  Google Scholar 

  111. Szalai ML, McGrath DV, Wheeler DR, Zifer T, McElhanon JR (2007) Dendrimers based on thermally reversible furan-maleimide Diels-Alder adducts. Macromolecules 40(4):818–823

    Article  CAS  Google Scholar 

  112. Ondrus V, Fisera L, Polborn K, Ertl P, Pronayova N (1995) Diels-Alder reaction of fulvenes with N-(3,5-dichlorophenyl)-maleimide. Monatshefte Fur Chemie 126(8-9):961–969

    Article  CAS  Google Scholar 

  113. Liu YL, Hsieh CY (2006) Crosslinked epoxy materials exhibiting thermal remendability and removability from multifunctional maleimide and furan compounds. J Polym Sci A Polym Chem 44(2):905–913

    Article  CAS  Google Scholar 

  114. Stenzel MH (2013) Bioconjugation using thiols: old chemistry rediscovered to connect polymers with nature’s building blocks. ACS Macro Lett 2(1):14–18

    Article  CAS  Google Scholar 

  115. Elliott JT, Prestwich GD (2000) Maleimide-functionalized lipids that anchor polypeptides to lipid bilayers and membranes. Bioconjug Chem 11(6):832–841

    Article  CAS  Google Scholar 

  116. Le Sann C (2006) Maleimide spacers as versatile linkers in the synthesis of bioconjugates of anthracyclines. Nat Prod Rep 23(3):357–367

    Article  Google Scholar 

  117. Warnecke A, Fichtner I, Garmann D, Jaehde U, Kratz F (2004) Synthesis and biological activity of water-soluble maleimide derivatives of the anticancer drug carboplatin designed as albumin-binding prodrugs. Bioconjug Chem 15(6):1349–1359

    Article  CAS  Google Scholar 

  118. Warnecke A, Kratz F (2003) Maleimide-oligo(ethylene glycol) derivatives of camptothecin as albumin-binding prodrugs: synthesis and antitumor efficacy. Bioconjug Chem 14(2):377–387

    Article  CAS  Google Scholar 

  119. Bykov VJN, Issaeva N, Zache N, Shilov A, Hultcrantz M, Bergman J, Selivanova G, Wiman KG (2005) Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. J Biol Chem 280(34):30384–30391

    Article  CAS  Google Scholar 

  120. Ghosh SS, Kao PM, McCue AW, Chappelle HL (1990) Use of maleimide-thiol coupling chemistry for efficient syntheses of oligonucleotide-enzyme conjugate hybridization probes. Bioconjug Chem 1(1):71–76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express our sincere gratitude to Helen Gerardi, Tian Lu, Guanglou Cheng and Chi-san Wu of Ashland, Inc. for many helpful conversations/suggestions for the contents, and their thorough review of the manuscript and valuable feedback prior to publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wu, F., Musa, O.M. (2016). Vegetable Oil–Maleic Anhydride and Maleimide Derivatives: Syntheses and Properties. In: Musa, O. (eds) Handbook of Maleic Anhydride Based Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-29454-4_3

Download citation

Publish with us

Policies and ethics