Skip to main content

Selection of GMI Wires for Sensor Applications

  • Chapter
  • First Online:
Ferromagnetic Microwire Composites

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1053 Accesses

Abstract

To search for a GMI material for GMI sensor applications, two main requirements should be satisfied, namely a high GMI ratio (or a large GMI effect) and a high sensitivity to the applied field (or a high magnetic response).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiriac H, Ovari TA (1996) Amorphous glass-covered magnetic wires: preparation, properties, applications. Prog Mater Sci 40:333–407

    Article  Google Scholar 

  2. Vazquez M (2001) Giant magnetoimpedance in soft magnetic “wires”. J Magn Magn Mater 226–230:693–699

    Article  Google Scholar 

  3. Knobel M, Pirota KR (2002) Giant magnetoimpedance: concepts and recent progress. J Magn Magn Mater 242–245:33–40

    Article  Google Scholar 

  4. Knobel M, Vazquez M, Kraus L (2003) Giant magnetoimpedance (Chap 5). In: Buschow KH (ed) Handbook of magnetic materials, vol 15. Elsevier Science B.V., Amsterdam, pp 1–69

    Google Scholar 

  5. Vazquez M, Knobel M, Sanchez ML, Valenzuela R, Zhukov AP (1997) Giant magneto-impedance effect in soft magnetic wires for sensor applications. Sen Act A 59:20–29

    Article  Google Scholar 

  6. McHenry ME, Willard MA, Laughlin DE (1999) Amorphous and nanocrystalline materials for applications as soft magnets. Prog Mater Sci 44:291–433

    Article  Google Scholar 

  7. Garcia D, Raposo V, Montero O, Iniguez JI (2006) Influence of magnetostriction constant on magnetoimpedance-frequency dependence. Sen Act A 129:227–230

    Google Scholar 

  8. Nie HB, Zhang XX, Pakhomov AB, Xie Z, Yan X, Zhukov A, Vazquez M (1999) Giant magnetoimpedance of glass-covered amorphous microwires of Co–Mn–Si–B and Co–Si–B. J Appl Phys 85:4445–4447

    Article  Google Scholar 

  9. Vinai F, Coisson M, Tiberto P (2006) High-frequency magneto-impedance in metastable metallic materials: an overview. J Magn Magn Mater 300:e82–e87

    Article  Google Scholar 

  10. Knobel M, Sanchez ML, Gomez-Polo C, Marin P, Vazquez M, Hernando A (1996) Giant magneto-impedance effect in nanostructured magnetic wires. J Appl Phys 79:1646–1648

    Article  Google Scholar 

  11. Kraus L, Knobel M, Kane SN, Chiriac H (1999) Influence of Joule heating on magnetostriction and giant magnetoimpedance effect in a glass covered CoFeSiB microwire. J Appl Phys 85:5435–5437

    Article  Google Scholar 

  12. Kraus L, Chiriac H, Ovari TA (2000) Magnetic properties of stress-Joule-heated amorphous FeCrBSi microwire. J Magn Magn Mater 215–216:343–345

    Article  Google Scholar 

  13. Pirota KR, Kraus L, Chiriac H, Knobel M (2001) Magnetostriction and GMI in Joule-heated CoFeSiB glass-covered microwires. J Magn Magn Mater 226–230:730–732

    Article  Google Scholar 

  14. Brunetti L, Tiberto P, Vinai F, Chiriac H (2001) High-frequency giant magnetoimpedance in joule-heated Co-based amorphous ribbons and wires. Mater Sci Eng, A 304–306:961–964

    Article  Google Scholar 

  15. Li DR, Lu ZC, Zhou SX (2004) Magnetic anisotropy and stress-impedance effect in Joule heated Fe73.5Cu1Nb3Si13.5B9 ribbons. J Appl Phys 95:204–207

    Article  Google Scholar 

  16. Kurlyandskaya GV, Vazquez M, Munoz JL, Garcia D, McCord J (1999) Effect of induced magnetic anisotropy and domain structure features on magneto-impedance in stress annealed Co-rich amorphous ribbons. J Magn Magn Mater 196–197:259–261

    Article  Google Scholar 

  17. Tejedor M, Hernando B, Sanchez ML, Prida VM, Vazquez M (1999) Stress and magnetic field dependence of magneto-impedance in amorphous Co66.3Fe3.7Si12B18 ribbons. J Magn Magn Mater 196–197:330–332

    Article  Google Scholar 

  18. Vazquez M, Hernando A (1996) A soft magnetic wire for sensor applications. J Phys D Appl Phys 29:939–949

    Article  Google Scholar 

  19. Moron C, Garcia A (2005) Giant magneto-impedance in nanocrystalline glass-covered microwires. J Magn Magn Mater 290–291:1085–1088

    Article  Google Scholar 

  20. Takemura Y, Tokuda H (1996) IEEE Trans Magn 32:4947–4949

    Article  Google Scholar 

  21. Li YF, Vaquez M, Chen DX (2000) GMI effect of Fe73.5−xCrxCu1Nb3Si13.5B9 amorphous and nanocrystalline soft wires. J Magn Magn Mater 249:342–345

    Google Scholar 

  22. Sinnecker JP, Garcia JM, Asenjo A, Vazquez M, Garcia-Arribas A (2000) Giant magnetoimpedance in CoP electrodeposited microtubes. J Mater Res 15:751–755

    Article  Google Scholar 

  23. Yu RH, Landry G, Li YF, Basu S, Xiao JQ (2000) Magneto-impedance effect in soft magnetic tubes. J Appl Phys 87:4807–4809

    Article  Google Scholar 

  24. Sinnecker JP, Knobel M, Pirota KR, Garcia JM, Asenjo A, Vazquez M (2000) Frequency dependence of the magnetoimpedance in amorphous CoP electrodeposited layers. J Appl Phys 87:4825–4827

    Article  Google Scholar 

  25. Garcia JM, Sinnecker JP, Asenjo A, Vazquez M (2001) Enhanced magnetoimpedance in CoP electrodeposited microtubes. J Magn Magn Mater 226–230:704–706

    Article  Google Scholar 

  26. Garcia JM, Asenjo A, Vazquez M, Yakunin AM, Antonov AS, Sinnecker JP (2001) Determination of closure domain penetration in electrodeposited microtubes by combined magnetic force microscopy and giant magneto-impedance techniques. J Appl Phys 89:3888–3891

    Article  Google Scholar 

  27. Jantaratana P, Sirisathitkul C (2006) Effects of thickness and heat treatments on giant magnetoimpedance of electrodeposited cobalt on silver wires. IEEE Trans Magn 42:358–362

    Article  Google Scholar 

  28. Li XP, Zhao ZJ, Seet HL, Heng WM, Oh TB, Lee JY (2003) Effect of magnetic field on the magnetic properties of electroplated NiFe/Cu composite wires. J Appl Phys 94:6655–6658

    Article  Google Scholar 

  29. Li XP, Zhao ZJ, Chua C, Seet HL, Lu L (2003) Enhancement of giant magnetoimpedance effect of electroplated NiFe/Cu composite wires by dc Joule annealing. J Appl Phys 94:7626–7630

    Article  Google Scholar 

  30. Hu J, Qin H, Zhang L, Chen J (2004) Giant magnetoimpedance effect in Ag/NiFe plate wire. Mater Sci Eng, B 106:202–206

    Article  Google Scholar 

  31. Atalay FE, Kaya H, Atalay S (2006) Unusual grain growth in electrodeposited CoNiFe/Cu wires and their magnetoimpedance properties. Mater Sci Eng, B 131:242–247

    Article  Google Scholar 

  32. Atalay FE, Kaya H, Atalay S (2006) Giant magnetoimpedance effect in electrodeposited CoNiFe/Cu wires with varying Ni, Fe and Co content. J Alloys Compd 420:9–14

    Article  Google Scholar 

  33. Atalay FE, Kaya H, Atalay S (2006) Magnetoimpedance effect in electroplated NiFeRu/Cu wire. J Phys D Appl Phys 39:431–436

    Article  Google Scholar 

  34. Velleuer J, Munoz AG, Yakabchuk H, Schiefer C, Hackl A, Kisker E (2007) Giant magnetoimpedance in electroplated NiFeMo/Cu microwires. J Magn Magn Mater 2:651–657

    Google Scholar 

  35. Zhang Z, Wu Q, Zhong K, Yang S, Lin X, Huang Z (2006) The size and space arrangement roles on coercivity of electrodeposited Co1−xCux nanowires. J Magn Magn Mater 303:e304–e307

    Article  Google Scholar 

  36. Wang XZ, Yuan WZ, Zhao Z, Li XD, Ruan JZ, Yang XL (2005) Giant magnetoimpedance effect in CuBe/NiFeB and CuBe/insulator/NiFeB electroless-deposited composite wires. IEEE Trans Magn 41:113–115

    Article  Google Scholar 

  37. Wang XZ, Yuan WZ, Zhao Z, Li XD, Ruan JZ, Zhao ZJ, Yang JX, Yang XL, Sun Z (2007) Enhancement of giant magnetoimpedance in composite wire with insulator layer. J Magn Magn Mater 308:269–272

    Article  Google Scholar 

  38. Usov N, Antonov A, Granovsky A (1997) Theory of giant magntoimpedance effect in composite amorphous wire. J Magn Magn Mater 171:64–68

    Article  Google Scholar 

  39. Phan MH, Peng HX, Wisnom MR, Tung MT, Dung NV, Nghi NH (2007) Optimized GMI effect in electrodeposited CoP/Cu composite wires. J Magn Magn Mater 2:244–247

    Google Scholar 

  40. Kurlyandskays GV, Garcia-Arribas A, Barandiaran JM (2003) Advantages of nonlinear giant magnetoimpedance for sensor applications. Sens Actuators A 106:234–239

    Article  Google Scholar 

  41. Li XP, Seet HL, Fran J, Yi JB (2006) Electrodeposition and characteristics of Ni80Fe20/Cu composite wires. J Magn Magn Mater 304:111–116

    Article  Google Scholar 

  42. Buznikov NA, Antonov AS, Granovsky AB, Kim CG, Kim CO, Li XP, Yoon SS (2006) Giant magnetoimpedance in composite wires with insulator layer between non-magnetic core and soft magnetic shell. J Magn Magn Mater 300:e63–e66

    Article  Google Scholar 

  43. Pirota K, Hernandez-Velez M, Navas D, Zhukov A, Vázquez M (2004) Multilayer microwires: tailoring magnetic behavior by sputtering and electroplating. Adv Funct Mat 14:266–268

    Article  Google Scholar 

  44. Pirota K, Provencio M, García K, Hernandez-Velez M, Vázquez MJ (2005) Magn Magn Mat 290–291:68

    Article  Google Scholar 

  45. Vázquez M, Pirota K, Torrejon J, Badini G, Torcunov AJ (2006) Magn Magn Mater 304:197–202

    Article  Google Scholar 

  46. Torrejón J, Badini G, Pirota K, Vázquez M (2007) Acta Mater 55:4271–4276

    Article  Google Scholar 

  47. Vazquez M (2007) Advanced magnetic microwires. In: Kronmüller H, Parkin S (ed) Handbook of magnetism and advanced magnetic materials. Wiley&Sons, NJ

    Google Scholar 

  48. Torrejón J, Infante G, Badini-Confalonieri G et al (2013) J Miner Met Mater Soc 65(7):890–900

    Article  Google Scholar 

  49. Vazquez M, Garcia-Beneytez JM, Garcia JM, Sinnecker JP, Zhukov AP (2000) Giant magneto-impedance in heterogeneous microwires. J Appl Phys 88:6501–6505

    Article  Google Scholar 

  50. Pirota KR, Kraus L, Chiriac H, Knobel M (2000) Magnetic properties and giant magnetoimpedance in a CoFeSiB glass-covered microwire. J Magn Magn Mater 221:L243–L247

    Article  Google Scholar 

  51. Phan MH, Yu SC, Kim CG, Vazquez M (2003) Origin of asymmetrical magnetoimpedance in a Co-based amorphous microwire due to dc bias current. Appl Phys Lett 83:2871–2873

    Article  Google Scholar 

  52. Phan MH, Peng HX, Yu SC, Chau N (2005) Valve behavior of giant magnetoimpedance in field-annealed Co70Fe5Si15Nb2.2Cu0.8B7 amorphous ribbon. J Appl Phys 97:10M108, 1–3

    Google Scholar 

  53. Phan MH, Peng HX, Yu SC, Vazquez M (2006) Optimized giant magnetoimpedance effect in amorphous and nanocrystalline materials. J Appl Phys 99:08C505, 1–3

    Google Scholar 

  54. Guo HQ, Kronmuller H, Dragon T, Cheng ZH, Shen BG (2001) Influence of nanocrystallization on the evolution of domain patterns and the magnetoimpedance effect in amorphous Fe73.5Cu1Nb3Si13.5B9 ribbons. J Appl Phys 89:514–516

    Article  Google Scholar 

  55. Lee HB, Kim KJ, Kim TK, Kim CO, Yu SC (2000) Magnetoimpedance effect in the nanocrystalline Fe–Zr–Cu–B–Al alloy system. J Appl Phys 87:5269–5291

    Article  Google Scholar 

  56. Viegas ADC, de Andrade AMH, Sommer RL, Jiang JS, Chien CL (2001) Magnetoimpedance in Fe73.5Cu1Nb3Si13.5B9 amorphous films at microwave frequencies. J Magn Magn Mater 226–230:707–708

    Article  Google Scholar 

  57. de Cos D, Fry N, Orue I, Panina PV, Garcia-Arribas A, Barandiaran JM (2006) Very large magnetoimpedance (MI) in FeNi/Au multilayer film systems. Sens Actuators A 129:256–259

    Article  Google Scholar 

  58. de Andrade AMH, da Silva RB, Correa MA, Viegas ADC, Severino AM, Sommer RL (2004) Magnetoimpedance of NiFe/Ag multilayers in the 100 kHz–1.8 GHz range. J Magn Magn Mater 272–276:1846–1847

    Article  Google Scholar 

  59. Xiao SQ, Liu YH, Yan SS, Dai YY, Zhang L, Mei LM (2000) Giant magnetoimpedance and domain structure in FeCuNbSiB films and sandwiched films. Phys Rev B 61:5734–5739

    Article  Google Scholar 

  60. Xiao SQ, Liu YH, Dai YY, Zhang L, Zhou SX, Liu GD (1999) Giant magnetoimpedance effect in sandwiched films. J Appl Phys 85:4127–4130

    Article  Google Scholar 

  61. Morikawa T, Nishibe Y, Yamadera H (1997) Giant magnetoimpedance effect in layered thin films. IEEE Trans Magn 33:4367–4372

    Article  Google Scholar 

  62. Morikawa T, Nishibe Y, Yamadera H, Nonomura Y, Takeuchi M, Sakata J, Taga Y (1996) Enhancement of giant magneto-impedance in layered film by insulator separation. IEEE Trans Magn 32:4965–4967

    Article  Google Scholar 

  63. Li XD, Yuan WZ, Zhao ZJ, Ruan JZ, Yang XL (2005) The GMI effect in nanocrystalline FeCuNbSib multilayered films with a SiO2 outer layer. J Phys D Appl Phys 38:1351–1354

    Article  Google Scholar 

  64. Nie HB, Pakhomov AB, Yan X, Zhang XX, Knobel M (1999) Giant magnetoimpedance in crystalline Mumetal. Sol Stat Commun 112:285–289

    Article  Google Scholar 

  65. Amalou F, Gijs MAM (2004) Giant magnetoimpedance of amorphous ribbon/Cu/amorphous ribbon trilayer microstructures. J Appl Phys 95:1364–1371

    Article  Google Scholar 

  66. Phan MH, Peng HX, Wisnom MR, Yu SC, Nghi NH Great enhancement of GMI effect in polymer composites containing Co-based ferromagnetic microwires. J Magn Magn Mater (in press)

    Google Scholar 

  67. Fu CM, Hsu CY, Chao YC, Kim DS, Matsushita N, Abe M (2004) Tunnel magnetoimpedance effect of the ZnNi-ferrite encapsulated NiFe micropsheres. J Magn Magn Mater 272–276:e1839–e1841

    Article  Google Scholar 

  68. Hu J, Qin H, Qi G, Jiang M (2006) Giant magnetoimpedance in a MnZn ferrite. J Magn Magn Mater 302:375–377

    Article  Google Scholar 

  69. Carara M, Sommer RL (1997) Giant magnetoimpedance in highly textured (110)[001] FeSi3 %. J Appl Phys 81:4107–4109

    Article  Google Scholar 

  70. Gomez-Polo C, Perez-Landazabal JI, Recarte V, Ciurzynska W (2003) Effect of the ordering on the magnetic and magnetoimpedance properties of Fe-6.5 % Si alloy. J Magn Magn Mater 254–255:88–90

    Article  Google Scholar 

  71. Jantaratana P, Sirisathitkul C (2004) Giant magnetoimpedance in silicon steels. J Magn Magn Mater 281:399–404

    Article  Google Scholar 

  72. Hu J, Qin H (2002) Magnetoimpedance effect in Fe flakes. J Magn Magn Mater 246:375–378

    Article  Google Scholar 

  73. Soares JM, de Araujo JH, Cabral FAO, Dumelow T, Machado FLA, de Araujo AEP (2002) Giant magnetoimpedance in FeAg granular alloys. Appl Phys Lett 80:2532–2534

    Article  Google Scholar 

  74. Fraga GLF, Pureur P, Brandao DE (2002) Spontaneous magnetoimpedance in the Heusler compounds Pd2MnSn and Pd2MnSb near the Curie temperature. Sol Stat Comm 124:7–10

    Article  Google Scholar 

  75. Fu CM, Hsu KS, Lin ML, Wen ZH (2000) Giant magnetoimpedance effects in sintered La1−xCaxMnO3 oxides. J Magn Magn Mater 209:151–153

    Article  Google Scholar 

  76. Hu J, Qin HW (2003) Magnetoimpedance effect at various temperatures for manganite La0.7Ca0.3MnO3−σ. Mater Sci Eng B 100:304–306

    Google Scholar 

  77. Castro GMB, Rodrigues AR, Machado FLA, de Araujo AEP, Jardim RF, Nigam AK (2004) Magnetoimpedance measurements in bulk samples of La0.7Ca0.3MnO3 and La0.6Y0.1Ca0.3MnO3. J All Comp 369:108–111

    Google Scholar 

  78. Hu J, Qin HW (2001) Magnetoimpedance effect in La0.7Sr0.3MnO3. J Magn Magn Mater 234:419–422

    Article  Google Scholar 

  79. Hu J, Qin HW (2001) Giant magnetoimpedance effect in La0.65Sr0.35MnO3 under low dc magnetic fields. Mater Sci Eng B 79:186–189

    Google Scholar 

  80. Hu J, Qin HW (2002) Magnetoimpedance effect in semiconducting La0.4Sr0.6MnO3. Mater Sci Eng B 88:18–21

    Google Scholar 

  81. Patanjali PV, Theule P, Zhai Z, Hakim N, Sridhar S, Suryanarayanan R, Apostu M, Dhalenne G, Revcolevschi A (1999) High-frequency magnetoimpedance of double perovskite La1.2Sr1.8Mn2O7: secondary transitions at high temperatures. Phys Rev B 60:9268–9271

    Article  Google Scholar 

  82. Hu J, Qin HW, Zhang Y (2000) Giant magnetoimpedance effect in La–Ba–Mn–O oxide. Mater Sci Eng B 77:280–281

    Article  Google Scholar 

  83. Hu J, Qin HW (2000) Magnetoimpedance effect in La0.67Ba0.33MnO3 under low dc magnetic fields. Sol Stat Commun 116:159–162

    Google Scholar 

  84. Hu J, Qin HW, Niu HD, Zhu L, Chen J, Xiao W, Pei Y (2003) Magnetoimpedance effect in manganite La2/3Ba1/3MnO3 at various temperatures. J Magn Magn Mater 261:105–111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Xin Peng .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peng, HX., Qin, F., Phan, MH. (2016). Selection of GMI Wires for Sensor Applications. In: Ferromagnetic Microwire Composites. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-29276-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29276-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29274-8

  • Online ISBN: 978-3-319-29276-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics