Skip to main content

Influence of Processing Parameters on GMI

  • Chapter
  • First Online:
Ferromagnetic Microwire Composites

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1053 Accesses

Abstract

The influences of the processing parameters, e.g. glass coating, sample geometry, heat treatment, stresses, neutron irradiation, hydrogen charging, magnetostriction, and after-effect, on giant magnetoimpedance are reviewed and discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vazquez M, Hernando A (1996) A soft magnetic wire for sensor applications. J Phys D Appl Phys 29:939–949

    Article  Google Scholar 

  2. Chiriac H, Ovari TA (1996) Amorphous glass-covered magnetic wires: preparation, properties, applications. Prog Mater Sci 40:333–407

    Article  Google Scholar 

  3. Knobel M, Vazquez M, Kraus L (2003) Giant magnetoimpedance. In: Buschow KH (ed) Handbook of magnetic materials, vol 15. Elsevier Science B.V., Amsterdam, pp 1–69 (Chap. 5)

    Google Scholar 

  4. Vazquez M (2007) Handbook of magnetism and advanced magnetic materials. In: Novel materials, vol 4. Wiley, pp 1–29 [chap. Advanced magnetic microwires]

    Google Scholar 

  5. Phan MH, Peng HX (2008) Giant magnetoimpedance materials: fundamentals and applications. Prog Mater Sci 53:323–420

    Google Scholar 

  6. Chiriac H, Ovari TA, Marinescu CS (1997) Comparative study of the giant magneto-impedance effect in CoFeSiB glass-covered and cold-drawn amorphous wires. IEEE Trans Magn 33:3352–3354

    Article  Google Scholar 

  7. Nie HB, Zhang XX, Pakhomov AB, Xie Z, Yan X, Zhukov A, Vazquez M (1999) Giant magnetoimpedance of glass-covered amorphous microwires of Co–Mn–Si–B and Co–Si–B. J Appl Phys 85:4445–4447

    Article  Google Scholar 

  8. Zhukova V, Larin VS, Zhukov A (2003) Stress induced magnetic anisotropy and giant magnetoimpedance in Fe-rich glass-coated magnetic microwires. J Appl Phys 94:1115–1118

    Article  Google Scholar 

  9. Knobel M, Sanchez ML, Gomez-Polo C, Marin P, Vazquez M, Hernando A (1996) Giant magneto-impedance effect in nanostructured magnetic wires. J Appl Phys 79:1646–1648

    Article  Google Scholar 

  10. Chiriac H, Ovari TA, Marinescu CS (1998) Giant magneto-impedance effect in nanocrystalline glass-covered wires. J Appl Phys 83:6584–6586

    Article  Google Scholar 

  11. Antonenco A, Manov V, Shepelev L, Sorkine E, Tarakanov J (2001) Annealing induced evolution of structure and high frequency magnetic properties in nanocrystalline glass-coated microwires. Mater Sci Eng A 304–306:975–978

    Article  Google Scholar 

  12. Vazquez M, Garcia-Beneytez JM, Garcia JM, Sinnecker JP, Zhukov AP (2000) Giant magneto-impedance in heterogeneous microwires. J Appl Phys 88:6501–6505

    Article  Google Scholar 

  13. Zhukova V, Usov NA, Zhukov A, Gonzalez J (2002) Length effect in a Co-rich amorphous wire. Phys Rev B 65:134407, 1–7

    Google Scholar 

  14. Vazquez V, Zhukov AP, Garcia KL, Pirota KR, Ruiz A, Martinez JL, Knobel M (2004) Temperature dependence of magnetization reversal in magnetostrictive glass-coated amorphous microwires. Mater Sci Eng A 375–377:1145–1148

    Article  Google Scholar 

  15. Vazquez V, Li YF, Chen DX (2002) Influence of the sample length and profile of the magnetoimpedance effect in FeCrSiBCuNb ultrasoft magnetic wires. J Appl Phys 91:6539–6544

    Article  Google Scholar 

  16. Ruiz J, Atienza JM, Elices M (2003) Residual stresses in wires: influence of wire length. J Mater Eng Perform 12:480–489

    Article  Google Scholar 

  17. Phan MH, Peng HX, Yu, SC, Wisnom MR (2007) Large enhancement of GMI effect in polymer composites containing Co-based ferromagnetic microwires. J Magn Magn Mater 316:e253–e256

    Google Scholar 

  18. Panina LV, Mohri K, Bushida K, Noda M (1994) Giant magneto-impedance and magneto-inductive effects in amorphous alloys. J Appl Phys 76:6198–6203

    Article  Google Scholar 

  19. Hu J, Qin H, Zhang F, Zheng RK (2002) Diameter dependence of the giant magnetoimpedance in hard-drawn CoFeSiB amorphous wires. J Appl Phys 91:7418–7420

    Article  Google Scholar 

  20. Jantaratana P, Sirisathitkul C (2006) Effects of thickness and heat treatments on giant magnetoimpedance of electrodeposited cobalt on silver wires. IEEE Trans Magn 42:358–362

    Article  Google Scholar 

  21. Xiao SQ, Liu YH, Dai YY, Zhang L, Zhou SX, Liu GD (1999) Giant magnetoimpedance effect in sandwiched films. J Appl Phys 85:4127–4130

    Article  Google Scholar 

  22. Makhnovskiy DP, Panina LV (2000) Size effect on magneto-impedance in layered films. Sen Act A 81:91–94

    Article  Google Scholar 

  23. Panina LV, Mohri K (2000) Magneto-impedance in multilayer films. Sen Act A 81:71–77

    Article  Google Scholar 

  24. Zhou Y, Yu JQ, Zhao XL, Cai BC (2001) Giant magnetoimpedance in layered FeSiB/Cu/FeSiB films. J Appl Phys 89:1816–1819

    Article  Google Scholar 

  25. Amalou F, Gijs MAM (2001) Giant magnetoimpedance of chemically thinned and polished magnetic amorphous ribbons. J Appl Phys 90:3466–3470

    Article  Google Scholar 

  26. Amalou F, Gijs MAM (2002) Giant magnetoimpedance in trilayer structures of patterned magnetic amorphous ribbons. Appl Phys Lett 81:1654–1656

    Article  Google Scholar 

  27. Amalou F, Gijs MAM (2004) Giant magnetoimpedance of amorphous ribbon/Cu/amorphous ribbon trilayer microstructures. J Appl Phys 95:1364–1371

    Article  Google Scholar 

  28. Sinnecker JP, Garcia JM, Asenjo A, Vazquez M, Garcia-Arribas A (2000) Giant magnetoimpedance in CoP electrodeposited microtubes. J Mater Res 15:751–755

    Article  Google Scholar 

  29. Sinnecker JP, Knobel M, Pirota KR, Garcia JM, Asenjo A, Vazquez M (2000) Frequency dependence of the magnetoimpedance in amorphous CoP electrodeposited layers. J Appl Phys 87:4825–4827

    Article  Google Scholar 

  30. Jantaratana P, Sirisathitkul C (2006) Effects of thickness and heat treatments on giant magnetoimpedance of electrodeposited cobalt on silver wires. IEEE Trans Magn 42:358–362

    Article  Google Scholar 

  31. Li XP, Zhao ZJ, Seet HL, Heng WM, Oh TB, Lee JY (2003) Effect of magnetic field on the magnetic properties of electroplated NiFe/Cu composite wires. J Appl Phys 94:6655–6658

    Article  Google Scholar 

  32. Le AT, Kim CO, Chau N, Cuong ND, Tho ND, Hoa NQ, Lee HB (2006) Soft magnetic properties and giant magneto-impedance effect of Fe73.5-xCrxSi13.5B9Nb3Au1 (x = 1-5) alloys. J Magn Magn Mater 307:178–185

    Article  Google Scholar 

  33. Chaturvedi A, Dhakal T, Le A-T, Phan MH, Srikanth H (2010) Correlation between magnetic softness, sample surface and magneto-impedance in Co69Fe4.5X1.5Si10B15 (X = Ni, Al, Cr) amorphous ribbons. Physica B 405:2836–2839

    Article  Google Scholar 

  34. Pirota KR, Kraus L, Knobel M, Pagliuso PG, Rettori C (1999) Angular dependence of giant magnetoimpedance in an amorphous Co-Fe-Si-B ribbon. Phys Rev B 60:6685–6691

    Article  Google Scholar 

  35. Kurlyandskaya GV, Barandianran JM, Vazquez M, Garcia D, Dmitrieva NV (2000) Influence of geometrical parameters on the giant magnetoimpedance response in amorphous ribbons. J Magn Magn Mater 215–216:740–742

    Article  Google Scholar 

  36. Vazquez M, Garcia-Beneytez JM, Garcia JM, Sinnecker JP, Zhukov AP (2000) Giant magneto-impedance in heterogeneous microwires. J Appl Phys 88:6501–6505

    Article  Google Scholar 

  37. Sommer RL, Chien CL (1995) Role of magnetic anisotropy in the magnetoimpedance effect in amorphous alloys. Appl Phys Lett 67:857–859

    Article  Google Scholar 

  38. Phan MH, Peng HX, Wisnom MR, Yu SC, Chau N (2006) Effect of annealing on the microstructure and magnetic properties of Fe-based nanocomposite materials. Compos A 37:191–196

    Article  Google Scholar 

  39. Atalay S, Adiguzel HI, Kamer O (2001) Effect of different heat treatments on magnetoelastic properties of Fe-based amorphous wire. Mater Sci Eng A 304–306:495–498

    Article  Google Scholar 

  40. Chen C, Luan KZ, Liu YH, Mei LM, Guo HQ, Shen BG, Zhao JG (1996) Giant magnetoimpedance effects in the soft ferromagnet Fe73.5CuNb3Si13.5B9. Phys Rev B 54:6092–6094

    Article  Google Scholar 

  41. Knobel M, Chiriac H, Sinecker JP, Marinescu S, Ovari TA, Inoue A (1997) Comparative study of the giant magneto-impedance effect in Fe-based nanocrystalline ribbons. Sen Act A 59:256–260

    Article  Google Scholar 

  42. Lee HB, Kim YK, Kim TK, Song YH, Yu SC (1999) Magnetoimpedance effect in nanocrystalline Fe90−xBxZr7Cu1Al2 (x = 2,4,6,8) alloys. J Appl Phys 85:5429–5431

    Article  Google Scholar 

  43. Lee HB, Kim KJ, Kim TK, Kim CO, Yu SC (2000) Magnetoimpedance effect in the nanocrystalline Fe–Zr–Cu–B–Al alloy system. J Appl Phys 87:5269–5291

    Article  Google Scholar 

  44. He J, Guo HQ, Shen BG, He KY, Zhang HW (2001) Influence of annealing on the magnetic properties and magneto-impedance response in Fe84Zr7B8Cu1 ribbons. Mater Sci Eng A 304–306:988–991

    Google Scholar 

  45. Lee HB, Kim KJ, Kim YK, Kim KS, Yu SC (2001) Ultra-soft magnetic properties in nanocrystalline Fe81B11Nb7Cu1 alloy. J All Comp 326:313–316

    Article  Google Scholar 

  46. Phan MH, Kim YS, Chien NX, Yu SC, Lee HB, Chau N (2003) Giant magnetoimpedance effect in amorphous Co70Fe5Si15B10 and Co70Fe5Si15Nb2.2Cu0.8B7 ribbons. Jpn J Appl Phys 42:5571–5574

    Article  Google Scholar 

  47. Phan MH, Peng HX, Wisnom MR, Yu SC, Chau N (2004) Enhanced GMI effect in a Co70Fe5Si15B10 ribbon due to Cu and Nb substitution for B. Phys Stat Sol A 201:1558–1562

    Article  Google Scholar 

  48. Rao KV, Humphrey FB, Costa-Kramer JL (1994) Very large magneto-impedance in amorphous soft ferromagnetic wires. J Appl Phys 76:6204–6208

    Article  Google Scholar 

  49. Machado LA, da Silva BL, Rezende SM, Martins CS (1994) Giant ac magnetoresistance in the soft ferromagnet Co70.4Fe4.6Si15B10. J Appl Phys 75:6563–6565

    Article  Google Scholar 

  50. Ku W, Ge F, Zhu J (1997) Effect of magnetic field annealing on the giant magnetoimpedance in FeCuMoSiB ribbons. J Appl Phys 82:5050–5053

    Article  Google Scholar 

  51. Liu JS, Zhang DY, Cao FY, Xing DW, Chen DM, Xue X, Sun JF (2012) Multiangle combined magnetic‐field annealing of Co‐based amorphous microwires for sensor applications. Phys Status Solidi A 209(5):984–989. doi:10.1002/pssa.201127538

    Google Scholar 

  52. Pirota KR, Kraus L, Chiriac H, Knobel M (2000) Magnetic properties and giant magnetoimpedance in a CoFeSiB glass-covered microwire. J Magn Magn Mater 221:L243–L247

    Article  Google Scholar 

  53. Raposo V, Garcia D, Zazo M, Flores AG, Iniguez JI (2004) Frequency dependence of the giant magnetoimpedance in current annealed amorphous wires. J Magn Magn Mater 272–276:1463–1465

    Article  Google Scholar 

  54. Jantaratana P, Sirisathitkul C (2006) Effects of thickness and heat treatments on giant magnetoimpedance of electrodeposited cobalt on silver wires. IEEE Trans Magn 42:358–362

    Article  Google Scholar 

  55. Kraus L, Knobel M, Kane SN, Chiriac H (1999) Influence of Joule heating on magnetostriction and giant magnetoimpedance effect in a glass covered CoFeSiB microwire. J Appl Phys 85:5435–5437

    Article  Google Scholar 

  56. Kraus L, Chiriac H, Ovari TA (2000) Magnetic properties of stress-Joule-heated amorphous FeCrBSi microwire. J Magn Magn Mater 215–216:343–345

    Article  Google Scholar 

  57. Pirota KR, Kraus L, Chiriac H, Knobel M (2001) Magnetostriction and GMI in Joule-heated CoFeSiB glass-covered microwires. J Magn Magn Mater 226–230:730–732

    Article  Google Scholar 

  58. Brunetti L, Tiberto P, Vinai F, Chiriac H (2001) High-frequency giant magnetoimpedance in Joule-heated Co-based amorphous ribbons and wires. Mater Sci Eng A 304–306:961–964

    Article  Google Scholar 

  59. Liu JS et al (2012) Enhancing GMI properties of melt-extracted Co-based amorphous wires by twin-zone Joule annealing. J Alloy Compd 541:215–221

    Article  Google Scholar 

  60. Li DR, Lu ZC, Zhou SX (2004) Magnetic anisotropy and stress-impedance effect in Joule heated Fe73.5Cu1Nb3Si13.5B9 ribbons. J Appl Phys 95:204–207

    Article  Google Scholar 

  61. Lee HB, Kim YK, Kim KJ, Kim TK (2000) A novel annealing technique for the magneto-impedance effect in amorphous Co66Fe4Ni1B14Si15 alloy. J Magn Magn Mater 215–216:310–312

    Article  Google Scholar 

  62. Hernando B, Sanchez ML, Prida VM, Tejedor M, Vazquez M (2001) Magnetoimpedance effect in amorphous and nanocrystalline ribbons. J Appl Phys 90:4783–4790

    Article  Google Scholar 

  63. Kurlyandskaya GV, Vazquez M, Munoz JL, Garcia D, McCord J (1999) Effect of induced magnetic anisotropy and domain structure features on magneto-impedance in stress annealed Co-rich amorphous ribbons. J Magn Magn Mater 196–197:259–261

    Article  Google Scholar 

  64. Tejedor M, Hernando B, Sanchez ML, Prida VM, Vazquez M (1999) Stress and magnetic field dependence of magneto-impedance in amorphous Co66.3Fe3.7Si12B18 ribbons. J Magn Magn Mater 196–197:330–332

    Article  Google Scholar 

  65. Wang ZC, Gong FF, Yang XL, Zeng L, Chen G, Yang JX, Quian SM, Yang DP (2000) Longitudinally driven giant magnetoimpedance effect in stress-annealed Fe-based nanocrystalline ribbons. J Appl Phys 87:4819–4821

    Article  Google Scholar 

  66. Li YF, Vazquez M, Chen DX (2002) Giant magnetoimpedance effect and magnetoelastic properties in stress-annealed FeCuNbSiB nanocrystalline wire. IEEE Trans Magn 38:3096–3098

    Article  Google Scholar 

  67. Mandal K, Pan Mandal S, Vazquez M, Puerta S, Hernando A (2002) Giant magnetoimpedance effect in a positive magnetostrictive glass-coated amorphous microwire. Phys Rev B 65:064402, 1–6

    Google Scholar 

  68. Gonzalez J, Chen AP, Blanco JM, Zhukov A (2002) Effect of applied mechanical stresses on the impedance response in amorphous microwires with vanishing magnetostriction. Phys Stat Sol A 189:599–608

    Article  Google Scholar 

  69. Kraus L (2003) GMI modeling and material optimization. Sen Act A 106:187–194

    Article  Google Scholar 

  70. Cobeno AF, Zhukov A, Blanco JM, Larin V, Gonzalez J (2001) Magnetoelastic sensor based on GMI of amorphous microwire. Sen Act A 91:95–98

    Article  Google Scholar 

  71. Ahn SJ, Kim CG, Park CG, Yu SC (2001) Laser annealing effect of giant magneto-impedance in amorphous Co66Fe4Nib14Si15 ribbon. Mater Sci Eng A 304–306:1026–1029

    Article  Google Scholar 

  72. Ahn SJ, Lee BS, Kim CG, Rheem YW, Yoon SS, Kim CO (2003) Giant magnetoimpedance in Co-based microwire annealed by pulsed Nd:YAG laser. Sen Act A 106:221–224

    Article  Google Scholar 

  73. Roozmeh SE, Tehranchi MM, Ghanatshoar M, Mohseni SM, Parhizkari M, Ghomi H, Latifi H (2006) Magnetoimpedance effect in laser annealed Co68.25Fe4.5Si12.25B15 amorphous ribbons. J Magn Magn Mater 304:e633–e635

    Article  Google Scholar 

  74. Ohnuma M, Hono K, Yanai T, Nakano M, Fukunaga H, Yoshizawa Y (2005) Origin of the magnetic anisotropy induced by stress annealing in Fe-based nanocrystalline alloy. Appl Phys Lett 86:152513

    Google Scholar 

  75. Popov VV et al (2013) Stress-induced magnetic hysteresis in amorphous microwires probed by microwave giant magnetoimpedance measurements. J Appl Phys 113(17):17A326

    Google Scholar 

  76. Phan MH, Peng HX, Wisnom MR, Yu SC, Kim CG, Vazquez M (2005) Neutron irradiation effect on permeability and magnetoimpedance of amorphous and nanocrystalline magnetic materials. Phys Rev B 71:134423, 1–5

    Google Scholar 

  77. Kim YS, Phan MH, Yu SC, Kim KS, Lee HB, Kim BG, Kang YH (2003) Annealing and neutron irradiation effects on the permeability in Fe86Zr7B6Cu1 alloy. Phys B 327:311–314

    Article  Google Scholar 

  78. Le AT, Hoa NQ, Tam PD, Park DG, Phan MH, Srikanth H, Yu SC (2010) Enhancement of the giant magnetoimpedance effect and its magnetic response in ion-irradiated magnetic amorphous ribbons. Mater Sci Eng B 166:89–93

    Article  Google Scholar 

  79. Cayssol F, Menendez JL, Ravelosona D, Chappert C, Jamet JP, Ferre J, Bernas H (2005) Enhancing domain wall motion in magnetic wires by ion irradiation. Appl Phys Lett 86:022503, 1–3

    Google Scholar 

  80. Atalay F, Atalay S (2005) Giant magnetoimpedance effect in NiFe/Cu plated wire with various plating thicknesses. J All Comp 392:322–328

    Article  Google Scholar 

  81. Atalay F, Kaya H, Atalay S (2006) Effect pf pH on the magnetoimpedance properties of electrodeposited CoNiFe microtubes. Phys B 371:327–331

    Article  Google Scholar 

  82. Costa-Kramer JL, Rao KV (1995) Influence of magnetostriction on magneto-impedance in amorphous soft ferromagnetic wires. IEEE Trans Magn 31:1261–1265

    Article  Google Scholar 

  83. Barandianran JM, Hernando A (2004) Magnetostriction influence on the giant magnetoimpedance effect: a key parameter. J Magn Magn Mater 268:309–314

    Article  Google Scholar 

  84. Garcia D, Raposo V, Montero O, Iniguez JI (2006) Influence of magnetostriction constant on magnetoimpedance-frequency dependence. Sen Act A 129:227–230

    Google Scholar 

  85. Pirota KR, Sartorelli ML, Knobel M, Gutierrez J, Brandiaran JM (1999) Influence of induced anisotropy and magnetostriction on the giant magnetoimpedance effect and its aftereffect in soft magnetic amorphous ribbon. J Magn Magn Mater 202:431–444

    Article  Google Scholar 

  86. Makhotkin VE, Shurukhin BP, Lopatin VA, Marchukov PY, Levin YK (1991) Magnetic field sensors based on amorphous ribbons. Sen Act A 25–27:759–762

    Google Scholar 

  87. Sartorelli ML, Knobel M, Schoenmaker J, Gutierrez J, Barandiarán JM (1997) Giant magneto-impedance and its relaxation in Co–Fe–Si–B amorphous ribbons. Appl Phys Lett 71:2208–2210

    Article  Google Scholar 

  88. Knobel M, Sartorelli ML, Schoenmaker J (1997) Magnetoimpedance aftereffect in a soft magnetic amorphous wire. Phys Rev B 55:3362–3365

    Article  Google Scholar 

  89. Sartorelli ML, Knobel M, Sinnecker JP (1998) Magneto-impedance relaxation in amorphous wires and ribbons. J Magn Magn Mater 177–181:121–122

    Article  Google Scholar 

  90. Raposo V, Flores AG, Zazo M, Iniguez JI (2003) Magnetic aftereffect of giant magnetoimpedance in amorphous wires. J Magn Magn Mater 254–255:204–206

    Article  Google Scholar 

  91. Raposo V, Montero O, Flores AG, Zazo M, Iniguez JI (2004) Magnetic aftereffect of the giant magnetoimpedance in Cobalt-based amorphous wires. J Magn Magn Mater 272–276:1844–1845

    Article  Google Scholar 

  92. Lee HB, Kim YS, Yu SC (2002) Supergiant magnetoimpedance effect of a LC-resonator using a glass-coated amorphous microwire. J Magn 7:160–164

    Article  Google Scholar 

  93. Paposo V, Vazquez M, Flores AG, Zazo M, Iniguez JI (2003) Giant magnetoimpedance effect enhancement by circuit matching. Sen Act A 106:329–332

    Article  Google Scholar 

  94. Le AT, Phan MH (2012) Advanced magnetic microwires as sensing elements for LC-resonant-type magnetoimpedance sensors: a comprehensive review. J Supercond Nov Magn 25:181–195

    Google Scholar 

  95. Kim YS, Yu SC, Le AT, Kim CO, Rhee JR, Vazquez M, Hwang MJ, Lee HB (2006) Supergiant magnetoimpedance effect in a glass-coated microwire LC resonator. J Appl Phys 99:08C510, 1–3

    Google Scholar 

  96. Le AT, Kim CO, Phan MH, Lee HB, Yu SC (2007) Very large magnetoimpedance in a glass-coated microwire LC-resonator. Physica B: Condens Matter 395:88–92

    Google Scholar 

  97. Le A-T, Phan M-H, Kim C-O, Vázquez M, Lee H, Hoa NQ, Yu S-C (2007) Influences of annealing and sample geometry on the giant magnetoimpedance effect in a glass-coated microwire LC-resonator. J Phys D: Appl Phys 40:4582

    Google Scholar 

  98. Kim YS, Yu SC, Lu H, Lee JB, Lee HB (2006) A class of micromachined magnetic resonator for high-frequency magnetic sensor applications. J Appl Phys 99:08B309, 1–3

    Google Scholar 

  99. Kim YS, Yu SC, Lee JB, Lee HB (2006) A new class of LC-resonator for micro-magnetic sensor application. J Magn Magn Mater 304:117–121

    Article  Google Scholar 

  100. Kim SD, Shin KH, Kim JW, Hak Y, Lim SH, Gong GS (2006) Magnetic field sensitivity of LC filter-type magnetoimpedance sensors. J Magn Magn Mater 304:e391–e393

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Xin Peng .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peng, HX., Qin, F., Phan, MH. (2016). Influence of Processing Parameters on GMI. In: Ferromagnetic Microwire Composites. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-29276-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29276-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29274-8

  • Online ISBN: 978-3-319-29276-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics