Skip to main content

Giant Magnetoimpedance: Concept, Theoretical Models, and Related Phenomena

  • Chapter
  • First Online:
Ferromagnetic Microwire Composites

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

In this chapter, the fundamental aspects of giant magnetoimpedance (GMI) and related phenomena are discussed. Prior to defining the GMI, the concepts of eddy current and the skin effect associated with GMI are comprehensively introduced. The existing models developed on the frequency dependence of GMI have been systematically examined in order to check the validity of each model in relation to the operating frequency range. It is concluded that the development of theoretical models that can rigorously predict the GMI effect in a wide frequency range from kHz to GHz is a challenging task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cullity BD (1972) Introduction to magnetic materials. Addision-Wesley, Reading

    Google Scholar 

  2. Jiles D (1998) Introduction to magnetism and magnetic materials, 2nd edn. Chapman and Hall, London

    Google Scholar 

  3. Panina LV, Mohri K (1994) Magneto-impedance effect in amorphous wires. Appl Phys Lett 65:1189–1191

    Article  Google Scholar 

  4. Beach RS, Berkowitz AE (1994) Giant magnetic field dependent impedance of amorphous FeCoSiB wire. Appl Phys Lett 64:3652–3654

    Article  Google Scholar 

  5. Beach RS, Berkowitz AE (1994) Sensitive field- and frequency-dependent impedance spectra of amorphous FeCoSiB wire and ribbon. J Appl Phys 76:6209–6213

    Article  Google Scholar 

  6. Panina LV, Mohri K, Uchiyama T, Noda M (1995) Giant magneto-impedance in Co-rich amorphous wires and films. IEEE Trans Magn 31:1249–1260

    Article  Google Scholar 

  7. Landau LD, Lifshitz EM (1975) Electrodynamics of continuous media. Pergamon Press, Oxford

    Google Scholar 

  8. Menard D, Britel M, Ciureanu P, Yelon A (1998) Giant magnetoimpedance in a cylindrical magnetic conductor. J Appl Phys 84:2805–2814

    Article  Google Scholar 

  9. Kraus L (1999) Theory of giant magneto-impedance in the planar conductor with uniaxial magnetic anisotropy. J Magn Magn Mater 195:764–778

    Article  Google Scholar 

  10. Machado FLA, Rezende SM (1996) A theoretical model for the giant magnetoimpedance in ribbons of amorphous soft-ferromagnetic alloys. J Appl Phys 79:6558–6560

    Article  Google Scholar 

  11. Yelon A, Menard D, Brittel M, Ciureanu P (1996) Calculations of giant magnetoimpedance and of ferromagnetic resonance response are rigorously equivalent. Appl Phys Lett 69:3084–3085

    Article  Google Scholar 

  12. Atkinson D, Squire PT (1998) Phenonemological model for magnetoimpedance in soft ferromagnet. J Appl Phys 83:6569–6571

    Article  Google Scholar 

  13. Chen DX, Munoz JL, Hernando A, Vazquez M (1998) Magnetoimpedance of metallic ferromagnetic wires. Phys Rev B 57:10699–10704

    Article  Google Scholar 

  14. Betancourt I, Valenzuela R, Vazquez M (2003) Domain model for the magnetoimpedance of metallic ferromagnetic wires. J Appl Phys 93:8110–8112

    Article  Google Scholar 

  15. Knobel M, Sanchez ML, Gomez-Polo C, Marin P, Vazquez M, Hernando A (1996) Giant magneto-impedance effect in nanostructured magnetic wires. J Appl Phys 79:1646–1648

    Article  Google Scholar 

  16. Devkota J, Ruiz A, Mukherjee P, Srikanth H, Phan MH (2013) Magneto-resistance, magneto-reactance, magneto-impedance effects in single and multi-wire systems. J Alloy Compd 549:295

    Article  Google Scholar 

  17. Mohri K, Kohsawa T, Kawashima K, Yoshida H, Panina LV (1992) Magneto-inductive effect (MI effect) in amorphous wires. IEEE Trans Magn 28:3150–3152

    Article  Google Scholar 

  18. Phan MH, Peng HX (2008) Giant magnetoimpedance materials: fundamentals and applications. Prog Mater Sci 53:323–420

    Google Scholar 

  19. Kraus L (2003) GMI modeling and material optimization. Sens Actuators Phys A 106:187–194

    Article  Google Scholar 

  20. Brittel MR, Menard D, Melo LGC, Ciureanu P, Yelon A, Cochrane CW, Rouabhi M, Cornut B (2000) Magnetoimpedance measurements of ferromagnetic resonance and antiresonance. Appl Phys Lett 77:2737–2739

    Article  Google Scholar 

  21. Chen DX, Munoz JL (1999) AC impedance and circular permeability of slab and cylinder. IEEE Trans Magn 35:1906–1923

    Article  Google Scholar 

  22. Kim CG, Yoon SS, Yu SC (2000) Decomposition of susceptibility spectra in a torsion-stressed Fe-based amorphous wire. Appl Phys Lett 76:3463–3465

    Article  Google Scholar 

  23. Yoon SS, Kim CG (2001) Separation of reversible domain-wall motion and magnetization rotation components in susceptibility spectra of amorphous magnetic materials. Appl Phys Lett 78:3280–3282

    Article  Google Scholar 

  24. Carara M, Baibich MN, Sommer RL (2000) Magnetization dynamics as derived from magneto impedance measurements. J Appl Phys 88:331–335

    Article  Google Scholar 

  25. Buttino G, Cecchetti A, Poppi M (2004) Domain wall relaxation frequency and magnetocrystalline anisotropy in Co- and Fe-based nanostructured alloys. J Magn Magn Mater 269:70–77

    Article  Google Scholar 

  26. Knobel M, Vazquez M, Kraus L (2003) Giant magnetoimpedance (Chap 5). In: Buschow KH (ed.) Handbook of magnetic materials, vol 15. Elsevier Science B.V., Amsterdam, pp 1–69

    Google Scholar 

  27. Ménard D, Yelon A (2000) Theory of longitudinal magnetoimpedance in wires. J Appl Phys 88:379–393

    Article  Google Scholar 

  28. Ménard D, Melo LGC, Brittel MR, Ciureanu P, Yelon A, Rouabhi M, Cochrane CW (2000) Modeling the magnetoimpedance in anisotropic wires. J Appl Phys 87:4801–4803

    Article  Google Scholar 

  29. Ciureanu P, Melo LGC, Seddaoui D, Ménard D, Yelon A (2007) Physical models of magnetoimpedance. J Appl Phys 102:073908

    Article  Google Scholar 

  30. Machado FLA, de Araujo AEP, Puca AA, Rodrigues A, Rezende SM (1999) Surface magnetoimpedance measurements in soft-ferromagnetic materials. Phys Status Solidi A 173:135–144

    Article  Google Scholar 

  31. Patton CE (1976) Classical theory of spin-wave dispersion for ferromagnetic metals. Czech J Phys 26:925–935

    Article  Google Scholar 

  32. Kraus L (1999) The theoretical limits of giant magnetoimpedance. J Magn Magn Mater 196–197:354–356

    Article  Google Scholar 

  33. Tatara G (2001) Theory of electron scattering by domain wall in nano-wires. J Magn Magn Mater 226–230:1873–1874

    Article  Google Scholar 

  34. Gomez-Polo C, Knobel M, Pirota KR, Vazquez M (2001) Giant magnetoimpedance modelling using Fourier analysis in soft magnetic amorphous wires. Phys B 299:322–328

    Article  Google Scholar 

  35. Usov NA, Gudoshnikov SA (2013) Giant magneto-impedance effect in amorphous ferromagnetic wire with a weak helical anisotropy: theory and experiment. J Appl Phys 113:243902

    Article  Google Scholar 

  36. Betzholz R, Gao H, Zhao Z, Hartmann U (2013) Phenomenological theory of the giant magnetoimpedance of composite wires. EPL 101:17005

    Article  Google Scholar 

  37. Buznikov NA, Yoon SS, Kim CG, Kim CO (2006) A model for exchange-biased asymmetric giant magneto-impedance in amorphous wires. J Phys D Appl Phys 39:3525

    Article  Google Scholar 

  38. Buznikov NA, Antonov AS, Rakhmanov AA (2011) A model for torsion-stress effect on nonlinear magnetoimpedance in amorphous wires with negative magnetostriction. J Magn Magn Mater 323:190

    Article  Google Scholar 

  39. Dong C, Chen S, Hsu TY (2002) A simple model of giant magneto-impedance effect in amorphous thin films. J Magn Magn Mater 250:288–294

    Article  Google Scholar 

  40. Lofland SE, Baghat SM, Dominguez M, Garciabeneytez JM, Guerrero F, Vazquez M (1999) Low-field microwave magnetoimpedance in amorphous microwires. J Appl Phys 85:4442–4444

    Article  Google Scholar 

  41. Ayten Kaya A (2013) Prediction of giant magnetoimpedance effect in amorphous glass-coated micro-wires using artificial neural network. J Inequalities Appl 2013:216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Xin Peng .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peng, HX., Qin, F., Phan, MH. (2016). Giant Magnetoimpedance: Concept, Theoretical Models, and Related Phenomena. In: Ferromagnetic Microwire Composites. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-29276-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29276-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29274-8

  • Online ISBN: 978-3-319-29276-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics