Skip to main content

Domain Structure and Properties of GMI Materials

  • Chapter
  • First Online:
Ferromagnetic Microwire Composites

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1047 Accesses

Abstract

The domain structure of a rapidly quenched material is often determined by coupling between magnetostriction and internal stresses frozen in during the fabrication process. Such knowledge of the domain structure of an actual material is extremely important in controlling and tailoring the magnetic properties of the material. This chapter is devoted to describing the formation of the domain structures of wires in tandem with their magnetisation processes and their magnetic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vazquez M, Hernando A (1996) A soft magnetic wire for sensor applications. J Phys D Appl Phys 29:939–949

    Article  Google Scholar 

  2. Chiriac H, Ovari TA (1996) Amorphous glass-covered magnetic wires: Preparation, properties, applications. Prog Mater Sci 40:333–407

    Article  Google Scholar 

  3. Velazquez J, Vazquez M, Hernando A, Savage HT, Wun-Fogle M (1992) Magnetoelastic anisotropy in amorphous wires due to quenching. J App Phys 70:6525–6527

    Article  Google Scholar 

  4. Reininger T, Kronmuller H, Gomez-Polo C, Vazquez M (1993) Magnetic domain observation in amorphous wires. J Appl Phys 73:5357–5359

    Article  Google Scholar 

  5. Phan MH, Peng HX (2008) Giant magnetoimpedance materials: fundamentals and applications. Prog Mater Sci 53:323–420

    Google Scholar 

  6. Vazquez M (2007) Handbook of magnetism and advanced magnetic materials (Chap. Advanced magnetic microwires). In: Novel materials, vol 4. John Wiley & Sons Ltd., NJ, pp 1–29

    Google Scholar 

  7. Usov NA (2002) Stress distribution and domain structure in amorphous ferromagnetic wires. J Magn Magn Mater 249:3–8

    Article  Google Scholar 

  8. Devkota J, Trang L, Liu J, Qin F, Sun J, Mukherjee P, Srikanth H, Phan MH (2014) A soft ferromagnetic multiwire-based inductance coil sensor for sensing applications. J Appl Phys 116:234504

    Article  Google Scholar 

  9. Liu JS, Qin FX, Chen DM, Wang H, Shen HX, Xing D, Phan MH, Sun JF (2014) Combined current-modulation annealing induced enhancement of GMI effect of Co-rich amorphous microwires. J Appl Phys 115:17A326

    Article  Google Scholar 

  10. Chen DM, Xing DW, Qin FX, Liu JS, Wang H, Wang XD, Sun JF (2013) Correlation of magnetic domains, microstructure and GMI effect of Joule-annealed melt-extracted Co68.15Fe4.35Si12.25B13.754 Nb1Cu0.5 microwires for double function sensors. Phys Status Solidi A 210:2515–2520

    Article  Google Scholar 

  11. Chizhik A, Gonzalez J, Zhukov A, Blanco J (2007) Transformation of surface domain structure in Co-rich amorphous wires. Sens Actuators B 126:235

    Article  Google Scholar 

  12. Chizhik A, Zablotskii V, Stupakiewicz A, Dejneka A, Polyakova T et al (2013) Circular domains nucleation in magnetic microwires. Appl Phys Lett 102:202406

    Article  Google Scholar 

  13. Hernando A, Barandiaran JM (1978) Circular magnetisation measurement in ferromagnetic wires. J Phys D Appl Phys 11:1539–1541

    Article  Google Scholar 

  14. Chiriac H, Ovari TA, Vazquez M, Hernando A (1998) Magnetic hysteresis in glass-covered and water-quenched amorphous wires. J Magn Magn Mater 177–181:205–206

    Google Scholar 

  15. Larin VS, Torcunov AV, Zhukov A, Gonzalez J, Vazquez M, Panina L (2002) Preparation and properties of glass-coated microwires. J Magn Magn Mater 249:39–45

    Article  Google Scholar 

  16. Zhukov A, Gonzalez J, Vazquez M, Larin V, Torcunov A (2004) Nanocrystalline and amorphous magnetic microwires. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol X, pp 1–22

    Google Scholar 

  17. Liu L, Matitsine SM, Tang CB, Rozanov KN (2009) Measurement of tunable permeability and permittivity of microwires composites at microwave frequency. PIERS Proceeding, Moscow, Russia, pp 1662–1666

    Google Scholar 

  18. Han M, Liang D, Deng LJ (2011) Appl Phys Lett 99:082503

    Article  Google Scholar 

  19. Makhnovskiy DP, Panina LV, Garcia C, Zhukov AP, Gonzalez J (2006) Phys Rev B: Condens Matter 74(6):064205

    Article  Google Scholar 

  20. Starostenko SN, Rozanov KN (2009) Prog Electromagnet Res 99:405

    Article  Google Scholar 

  21. Dominguez L, Blanco JM, Aragoneses P, Gonzalez J, Valenzuela R, Vazquez M, Hernando A (1996) Circumferential magnetization processes in CoFeBSi wires. J Appl Phys 79:6539–6541

    Article  Google Scholar 

  22. Zhukova V, Zhukov AP, Usov NA, Blanco JM, Gonzalez J (2004) Magnetization reversal process at low applied magnetic field in a Co-rich amorphous wire. Phys B 343:369–373

    Article  Google Scholar 

  23. Radkovskaia AA, Sandacci SI, Panina LV, Mapps DJ (2004) Valve-like behavior of the magnetoimpedance in the GHz range. J Magn Magn Mater 272–276:1855–1857

    Google Scholar 

  24. Landau LD, Lifshitz EM (1975) Electrodynamics of continuous media. Pergamon Press, Oxford

    Google Scholar 

  25. Zhukov A (2001) Domain wall propagation in a Fe-rich glass-coated amorphous microwire. Appl Phys Lett 78:3106–3108

    Article  Google Scholar 

  26. Puerta S, Cortina D, Garcia-Miquel H, Chen DX, Vazquez M (2001) Propagation of domain walls in bistable amorphous wires and microwires. J Non-Cryst Sol 287:370–373

    Article  Google Scholar 

  27. Chiriac H, Hristoforou E, Neagu M, Darie I (2001) On the domain wall propagation in glass covered amorphous wires. Mater Sci Eng A 304–306:1011–1013

    Google Scholar 

  28. Bechet D, Regazzoni G, Dubois JM (1989) Pour la Science 139:30

    Google Scholar 

  29. Li JCM (1993) In: Liebermann HH (ed) Rapidly solidified alloys: processes, structures, properties, applications. Marcel Dekker Inc., New York, p. 379 (Chap. 13)

    Google Scholar 

  30. Chen HS, Sherwood RC, Jin S, Chi GC, Inoue A, Masumoto T, Hagiwara M (1984) Mechanical properties and magnetic behavior of deformed metal glass wires. J Appl Phys 55:1796–1798

    Article  Google Scholar 

  31. Goto T, Toyama T (1985) The preparation of ductile high-strength Fe-based filaments using the methods of glass-coated melt spinning. J Mater Sci 20:1883–1888

    Article  Google Scholar 

  32. Atalay S, Adiguzel HI, Kamer O (2001) Effect of different heat treatments on magnetoelastic properties of Fe-based amorphous wire. Mater Sci Eng A 304–306:495–498

    Google Scholar 

  33. Zhukova V, Cobeno AF, Zhukov A, de Arellano Lopez AR, Lopez-Pombero S, Blanco JM, Larin V, Gonzalez J (2002) Correlation between magnetic and mechanical properties of devitrified glass-coated Fe71.8Cu1Nb3.1Si15B9.1 microwires. J Magn Magn Mater 249:79–84

    Article  Google Scholar 

  34. Goto T, Nagano M, Tanaka K (1977) Tensile strength of copper and iron filaments produced by method of glass-coated melt spinning. Transactions of the Japan Institute of Metals 18:209–213

    Article  Google Scholar 

  35. Spaepen F, Tsao SS, Wu TW (1985) In: Haasen P, Jafee RI (eds) Amorphous metals and semiconductors. Oxford, Pergamon, pp 365–378

    Google Scholar 

  36. Wang Huan, Xing Dawei, Peng Huaxin, Qin Faxiang, Cao Fuyang, Wang Guoqiang, Sun Jianfei (2012) Scripta Mater 66:1041

    Article  Google Scholar 

  37. Wang H, Qin FX, Xing D, Cao F, Wang XD, Peng H, Sun J (2012) Acta Mater 60:5425

    Article  Google Scholar 

  38. Fels A, Friedrich K, Hornbogen E (1984) Reinforcement of brittle epoxy resin by metallic glass ribbons. J Mater Sci Lett 3:569–574

    Article  Google Scholar 

  39. Ohnaka I (1985) Melt spinning into a liquid cooling medium. Int J Rapid Solidification 1:219–236

    Google Scholar 

  40. Marin P, Hernando A (2000) Applications of amorphous and nanocrystalline magnetic materials. J Magn Magn Mater 215–216:729–734

    Google Scholar 

  41. Hashimoto K (1985) In: Steeb S, Warlimont H (eds) Proceedings of 5th international conference on rapidly quenched metals Amsterdam, North-Holland, pp 1449–1456

    Google Scholar 

  42. Kawashima A, Asami K, Sato T, Hashimoto K (1985) In: Steeb S, Warlimont H (eds) Proceedings of 5th international conference on rapidly quenched metals Amsterdam, North-Holland, pp 1671–1674

    Google Scholar 

  43. Pardo A, Otero E, Merino MC, Lopez MD, Vazquez M, Agudo P (2001) The Influence of Cr Addition on the Corrosion Resistance of Fe73.5Si13.5Nb3Cu1 Metallic Glass in SO2 Contaminated Environments. Corros Sci 43:689–705

    Article  Google Scholar 

  44. Choi HW, Kim HK, Kim J, Han SH, Kim HJ (2001) The effect of Cr addition on structure and corrosion resistance in FeTiN nanocrystalline soft magnetic thin films. IEEE Trans Magn 37:1773–1775

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Xin Peng .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peng, HX., Qin, F., Phan, MH. (2016). Domain Structure and Properties of GMI Materials. In: Ferromagnetic Microwire Composites. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-29276-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29276-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29274-8

  • Online ISBN: 978-3-319-29276-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics