Skip to main content

Fabrication of Ferromagnetic Wires

  • Chapter
  • First Online:
Ferromagnetic Microwire Composites

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1053 Accesses

Abstract

This chapter describes the fabrication methods of amorphous wires and microwires. The advantages and disadvantages of each method are examined and discussed. The existing techniques of glass removal for amorphous glass-covered wires (AGCW) are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies HA, Lewis BG, Donald IW (1978) In: R. Mehrabian R, Kear BH, Cohen M (eds) Rapid solidification processing: principles and technologies. Claitor’s Pub. Div., Baton Rouge, 78–83

    Google Scholar 

  2. Luborsky FE, Walter JL, Liebermann HH (1979) Engineering magnetic properties of Fe–Ni–B amorphous alloys. IEEE Trans Magn 15:909–911

    Article  Google Scholar 

  3. Goto T (1980) Fe–B and Fe–Si–B system alloy filaments produced by glass-coated melt spinning. Trans Jan Inst Met 21:219–225

    Google Scholar 

  4. Squire PT, Atkinson D, Gibbs MRJ, Atalay SJ (1994) Amorphous wires and their applications. J Magn Magn Mater 132:10–21

    Article  Google Scholar 

  5. Ohnaka I, Fukusako T, Matui T (1981) Preparation of amorphous wires. Journal of Japan Institute of Metals 45:751–762

    Google Scholar 

  6. Matsumoto T, Ohnaka I, Inoue A, Hagiwara M (1981) Scr Metal 15:293–306

    Article  Google Scholar 

  7. Vazquez M (2007) Handbook of magnetism and advanced magnetic materials (chap. Advanced magnetic microwires). In: Novel materials, vol 4. John Wiley & Sons Ltd, NJ, pp 1–29

    Google Scholar 

  8. Nderu JN, Shinokawa Y, Yamasaki J, Humphrey FB, Ogasawara I (1996) Dependence of magnetic properties of (Fe50Co50)78Si7B15 amorphous wire on the diameter. IEEE Trans Magn 32:4878–4880

    Article  Google Scholar 

  9. Ogasawara I, Mohri K (1990) Tension annealing cold-drawn amorphous CoFeSiB wires. IEEE Trans Magn 26:1795–1797

    Article  Google Scholar 

  10. Taylor GF (1924) A method of drawing metallic filaments and a discussion of their properties and uses. Phys Rev 23:655–660

    Article  Google Scholar 

  11. Taylor GF (1931) Process and apparatus for making filaments, Patented 24 Feb 1931, United States Patent Office, 1, 793, 529

    Google Scholar 

  12. Donald IW (1987) Production, properties and applications of microwire and related products. J Mater Sci 22:2261–2279

    Google Scholar 

  13. Goto T, Nagano M, Tanaka K (1977) Tensile strength of copper and iron filaments produced by method of glass-coated melt spinning. Transactions of the Japan Institute of Metals 18:209–213

    Article  Google Scholar 

  14. Wiesner H, Schneider J (1974) Magnetic properties of amorphous FeP alloys containing Ga, Ge, and As. Phys Stat Soli A 26:71–75

    Article  Google Scholar 

  15. Ulitovsky A V (1951) In: Micro-technology in design of electric devices, vol 7, Leningrad, p 6

    Google Scholar 

  16. Ulitovsky AV, Maianski IM, Avramenco AI (1960) Method of continuous casting of glass coated microwire. Patent No. 128427 (USSR), 15 May 1960, Bulletin. No. 10, p 14

    Google Scholar 

  17. Chiriac H (2001) Preparation and characterization of glass covered magnetic wire. Mater Sci Eng A 304–306:166–171

    Google Scholar 

  18. Larin VS, Torcunov AV, Zhukov A, Gonzalez J, Vazquez M, Panina L (2002) Preparation and properties of glass-coated microwires. J Magn Magn Mater 249:39–45

    Article  Google Scholar 

  19. Zhukov A, Gonzalez J, Vazquez M, Larin V, Torcunov A (2004) Nanocrystalline and amorphous magnetic microwires. In: Nalwa HS (ed.) Encyclopedia of nanoscience and nanotechnology, vol X, pp 1–22

    Google Scholar 

  20. Beach RS, Smith N, Platt CL, Jeffers F, Berkowitz AE (1996) Magneto-impedance effect in NiFe plated wire. Appl Phys Lett 68:2753–2755

    Article  Google Scholar 

  21. Sinnecker JP, Garcia JM, Asenjo A, Vazquez M, Garcia-Arribas A (2000) Giant magnetoimpedance in CoP electrodeposited microtubes. J Mater Res 15:751–755

    Article  Google Scholar 

  22. Yu RH, Landry G, Li YF, Basu S, Xiao JQ (2000) Magneto-impedance effect in soft magnetic tubes. J Appl Phys 87:4807–4809

    Article  Google Scholar 

  23. Sinnecker JP, Knobel M, Pirota KR, Garcia JM, Asenjo A, Vazquez M (2000) Frequency dependence of the magnetoimpedance in amorphous CoP electrodeposited layers. J Appl Phys 87:4825–4827

    Article  Google Scholar 

  24. Garcia JM, Sinnecker JP, Asenjo A, Vazquez M (2001) Enhanced magnetoimpedance in CoP electrodeposited microtubes. J Magn Magn Mater 226–230:704–706

    Google Scholar 

  25. Garcia JM, Asenjo A, Vazquez M, Yakunin AM, Antonov AS, Sinnecker JP (2001) Determination of closure domain penetration in electrodeposited microtubes by combined magnetic force microscopy and giant magneto-impedance techniques. J Appl Phys 89:3888–3891

    Article  Google Scholar 

  26. Jantaratana P, Sirisathitkul C (2006) Effects of thickness and heat treatments on giant magnetoimpedance of electrodeposited cobalt on silver wires. IEEE Trans Magn 42:358–362

    Article  Google Scholar 

  27. Li XP, Zhao ZJ, Seet HL, Heng WM, Oh TB, Lee JY (2003) Effect of magnetic field on the magnetic properties of electroplated NiFe/Cu composite wires. J Appl Phys 94:6655–6658

    Article  Google Scholar 

  28. Li XP, Zhao ZJ, Chua C, Seet HL, Lu L (2003) Enhancement of giant magnetoimpedance effect of electroplated NiFe/Cu composite wires by dc Joule annealing. J Appl Phys 94:7626–7630

    Article  Google Scholar 

  29. Hu J, Qin H, Zhang L, Chen J (2004) Giant magnetoimpedance effect in Ag/NiFe plate wire. Mater Sci Eng, B 106:202–206

    Article  Google Scholar 

  30. Atalay FE, Kaya H, Atalay S (2006) Unusual grain growth in electrodeposited CoNiFe/Cu wires and their magnetoimpedance properties. Mater Sci Eng, B 131:242–247

    Article  Google Scholar 

  31. Atalay FE, Kaya H, Atalay S (2006) Giant magnetoimpedance effect in electrodeposited CoNiFe/Cu wires with varying Ni, Fe and Co content. J All Comp 420:9–14

    Article  Google Scholar 

  32. Atalay FE, Kaya H, Atalay S (2006) Magnetoimpedance effect in electroplated NiFeRu/Cu wire. J Phys D Appl Phys 39:431–436

    Article  Google Scholar 

  33. Velleuer J, Munoz AG, Yakabchuk H, Schiefer C, Hackl A, Kisker E Giant magnetoimpedance in electroplated NiFeMo/Cu microwires. J Magn Magn Mater (in press)

    Google Scholar 

  34. Zhang Z, Wu Q, Zhong K, Yang S, Lin X, Huang Z (2006) The size and space arrangement roles on coercivity of electrodeposited Co1−xCux nanowires. J Magn Magn Mater 303:e304–e307

    Article  Google Scholar 

  35. Wang XZ, Yuan WZ, Zhao Z, Li XD, Ruan JZ, Yang XL (2005) Giant magnetoimpedance effect in CuBe/NiFeB and CuBe/Insulator/NiFeB electroless-deposited composite wires. IEEE Trans Magn 41:113–115

    Article  Google Scholar 

  36. Wang XZ, Yuan WZ, Zhao Z, Li XD, Ruan JZ, Zhao ZJ, Yang JX, Yang XL, Sun Z (2007) Enhancement of giant magnetoimpedance in composite wire with insulator layer. J Magn Magn Mater 308:269–272

    Article  Google Scholar 

  37. Torrejón J, Badini G, Pirota K, Vázquez M (2007) Acta Mater. 55:4271

    Google Scholar 

  38. Torrejón J, Infante G, Badini-Confalonieri G, Pirota KR, Vázquez M (2013) Electroplated bimagnetic microwires: from processing to magnetic properties and sensor devices. JOM 65:890

    Article  Google Scholar 

  39. Maringer RE, Mobley CE (1974) Casting of metallic filament and fiber. J Vac Sci Technol 11:1067–1071

    Article  Google Scholar 

  40. Allahverdi M, Drew R, Rudkowska P, Rudkowski G, Strom-Olsen J (1996) Amorphous CaOAl2O3 fibers by melt extraction. Mater Sci Eng, A 207:12–21

    Article  Google Scholar 

  41. Zberg B, Arata ER, Uggowitzer PJ, Lofler JF (2009) Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics. Acta Mater 57:3223–3231

    Article  Google Scholar 

  42. Wang H, Xing D, Wang X, Sun J (2011) Fabrication and characterization of melt-extracted co-based amorphous wires. Metall Mater Trans A 42:1103–1108

    Article  Google Scholar 

  43. Man-Gui H, Yu O, Di-Fei L, Long-Jiang D (2009) Annealing effects on the microwave permittivity and permeability properties of Fe79Si16B5 microwires and their microwave absorption performances. Chin Phys B 18:1261

    Article  Google Scholar 

  44. Zhukova V, Zhukov A, Garcı́a KL, Kraposhin V, Prokoshin A, Gonzalez J et al. (2003) Magnetic properties and GMI of soft melt-extracted magnetic amorphous fibers. Sens Act A: Phys 106:225–229

    Google Scholar 

  45. Wang H, Xing D, Peng HX, Qin FX, Cao F, Wang G et al (2012) Nanocrystallization enabled tensile ductility of co-based amorphous microwires. Scripta Mater 66:1041–1044

    Article  Google Scholar 

  46. Wang H, Qin FX, Xing D, Peng HX, Cao F, Wang X et al. (2012) Enhanced mechanical and GMI properties due to deformationinduced residual stress and microstructural changes in Co–Fe–Si–B amorphous microwires. Acta Mater. http://dx.doi.org/10.1016/j.actamat.2012.06.047

  47. Strom-Olsen J (1994) Fine fibres by melt extraction. Mater Sci Eng A 178:239–243 (NATO-Advanced research workshop on undercooled metallic melts: properties, solidification and metastable phases)

    Google Scholar 

  48. Di Y, Jiang J, Du G, Tian B, Bie S, He H (2007) Magnetic and microwave properties of glass-coated amorphous ferromagnetic microwires. Trans Nonferr Metal Soc China 17:1352–1357

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Xin Peng .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peng, HX., Qin, F., Phan, MH. (2016). Fabrication of Ferromagnetic Wires. In: Ferromagnetic Microwire Composites. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-29276-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29276-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29274-8

  • Online ISBN: 978-3-319-29276-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics