Skip to main content

Microwire-Based Metacomposites

  • Chapter
  • First Online:
Ferromagnetic Microwire Composites

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1081 Accesses

Abstract

Metamaterials are one of the most appealing forefront subjects in materials and physics nowadays in view of the prospect that their successful application may renovate a number of industrial domains such as aeronautics, optoelectronics, and transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969

    Article  Google Scholar 

  2. Shalaev VM, Cai W, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV (2005) Negative index of refraction in optical metamaterials. Opt Lett 30:3356–3358

    Article  Google Scholar 

  3. Alu A, Engheta N (2003) Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunnelling and transparency. IEEE Trans Antennas Propag 51:2558–2571

    Article  Google Scholar 

  4. Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science 292:77–79

    Article  Google Scholar 

  5. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187

    Article  Google Scholar 

  6. Valentine J, Li J, Zentgraf T, Bartal G, Zhang X (2009) An optical cloak made of dielectrics. Nat Mater 8:568–571

    Article  Google Scholar 

  7. Sihvola A (2007) Metamaterials in electromagnetics. Metamaterials 1:2–11

    Article  Google Scholar 

  8. http://www.aichi-mi.com/

  9. Shamonina E, Solymar L (2007) Metamaterials: how the subject started. Metamaterials 1:12

    Google Scholar 

  10. Maier SA (2007) Metamaterials and imaging with surface plasmon polaritons. Springer, New York

    Google Scholar 

  11. Dolling G, Wegener M, Linden S, Hormann C (2006) Photorealistic images of objects in effective negative-index materials. Opt Express 14:1842–1849

    Article  Google Scholar 

  12. Veselago V (1968) The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Phys Usp 10:509–514

    Article  Google Scholar 

  13. Rotman W (1962) Plasma simulation by artificial dielectrics and parallel-plate media. IRE Trans Anntenas Propag 10:82–95

    Article  Google Scholar 

  14. Pendry JB, Holden AJ, Stewart WJ, Youngs I (1996) Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett 76:4773–4776

    Article  Google Scholar 

  15. Lagarkov AN, Matytsin SM, Rozanov KN, Sarychev AK (1998) Dielectric properties of fiber-filled composites. J Appl Phys 84:3806–3814

    Article  Google Scholar 

  16. Lagarkov AN, Sarychev AK (1996) Electromagnetic properties of composites containing elongated conducting inclusions. Phys Rev B 53:6318–6336

    Article  Google Scholar 

  17. Makhnovskiy DP, Panina LV. (2005) Field and stress tunable microwave composite materials based on ferromagnetic wires. In: Murray VN (ed) Progress in ferromagnetism research. Nova Science Publishers Inc., Hauppauge

    Google Scholar 

  18. Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537

    Article  Google Scholar 

  19. Shalaev VM (2007) Optical negative-index metamaterials. Nat Photon 1:41–48

    Google Scholar 

  20. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980

    Article  Google Scholar 

  21. Liu R, Ji C, Mock JJ, Chin JY, Cui TJ, Smith DR (2009) Broadband ground-plane cloak. Science 323:366–369

    Article  Google Scholar 

  22. Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2008) Designs for optical cloaking with high-order transformations. Opt Express 16:5444–5452

    Article  Google Scholar 

  23. Sato K, Nomura T, Matsuzawa S, Iizuka H (2008) Metamaterial techniques for automotive applications. In: PIERS proceedings, Hangzhou, China, pp 1122–1125, 24–28 Mar 2008

    Google Scholar 

  24. Melik R, Unal E, Perkgoz NK, Puttlitz C, Demir HV (2009) Metamaterial-based wireless strain sensors. Appl Phys Lett 95:011106

    Article  Google Scholar 

  25. Alici KB, Özbay E (2007) Radiation properties of a split ring resonator and monopole composite. Phys Status Solidi B 244:1192–1196

    Article  Google Scholar 

  26. Zou Y, Jiang L, Wen S, Shu W, Qing Y, Tang Z, Luo H, Fan D (2008) Enhancing and tuning absorption properties of microwave absorbing materials using metamaterials. Appl Phys Lett 93:261115

    Article  Google Scholar 

  27. Watts CM, Liu X, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24:OP98–OP120

    Google Scholar 

  28. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  Google Scholar 

  29. Wakatsuchi H, Christopoulos C (2011) Generalized scattering control using cut-wire-based metamaterials. Appl Phys Lett 98:221105

    Google Scholar 

  30. Ourir A, Ouslimani HH (2011) Negative refractive index in symmetric cut-wire pair metamaterial. Appl Phys Lett 98:113505

    Google Scholar 

  31. Butt H, Dai Q, Farah P, Butler T, Wilkinson TD, Baumberg JJ, Amaratunga GAJ (2010) Metamaterial high pass filter based on periodic wire arrays of multiwalled carbon nanotubes. Appl Phys Lett 97:163102

    Article  Google Scholar 

  32. Wen QY, Zhang HW, Yang QH, Xie YS, Chen K, Liu YL (2010) Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl Phys Lett 97:021111

    Google Scholar 

  33. Bratkovsky A, Ponizovskaya E, Wang SY, Holmstrom P, Thylen L, Fu Y, Agren H (2008) A metalwire/ quantum-dot composite metamaterial with negative epsilon and compensated optical loss. Appl Phys Lett 93:193106

    Google Scholar 

  34. Zhou R, Zhang H, Xin H (2010) Metallic wire array as low-effective index of refraction medium for directive antenna application. IEEE Trans Antennas Propag 58:79–87

    Article  Google Scholar 

  35. Gorkunov MV, Osipov MA (2008) Tunability of wire-grid metamaterial immersed into nematic liquid crystal. J Appl Phys 103:036101

    Google Scholar 

  36. Cabuz AI, Nicolet A, Zolla F, Felbacq D, Bouchitte G (2011) Homogenization of nonlocal wire metamaterial via a renormalization approach. J Opt Soc Am B Opt Phys 28:1275–1282

    Article  Google Scholar 

  37. Dong ZG, Xu MX, Lei SY, Liu H, Li T, Wang FM, Zhu SN (2008) Negative refraction with magnetic resonance in a metallic double-ring metamaterial. Appl Phys Lett 92:064101

    Article  Google Scholar 

  38. Falcone F, Martin F, Bonache J, Marques R, Lopetegi T, Sorolla M (2004) Left handed coplanar waveguide band pass filters based on bi-layer split ring resonators. IEEE Microwave Wirel Compon Lett 14:10–12

    Article  Google Scholar 

  39. Marqués R, Medina F, Rafii-El-Idrissi R (2002) Role of bianisotropy in negative permeability and left-handed metamaterials. Phys Rev B 65:144440

    Article  Google Scholar 

  40. Marques R, Mesa F, Martel J, Medina F (2003) Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design - theory and experiments. IEEE Trans Antennas Propag 51:2572–2581

    Article  Google Scholar 

  41. Baena JD, Marqués R, Medina F, Martel J (2004) Artificial magnetic metamaterial design by using spiral resonators. Phys Rev B 69:014402

    Article  Google Scholar 

  42. Baena J, Bonache J, Martin F, Sillero R, Falcone F, Lopetegi T, Laso M, Garcia-Garcia J, Gil I, Portillo M, Sorolla M (2005) Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Trans Microwave Theor Techn 53:1451–1461

    Article  Google Scholar 

  43. Zhao H, Zhou J, Zhao Q, Li B, Kang L, Bai Y (2007) Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires. Appl Phys Lett 91:131107

    Article  Google Scholar 

  44. Zhao H, Zhou J, Kang L, Zhao Q (2009) Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires. Opt Express 17:13373–13380

    Article  Google Scholar 

  45. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 312(5781):1780–1782

    Article  MathSciNet  MATH  Google Scholar 

  46. Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294

    Article  Google Scholar 

  47. Bückmann T, Thiel M, Kadic M, Schittny R, Wegener M (2014) An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat Commun 5, doi:10.1038/ncomms5130

  48. Pendry JB, Holden AJ, Robbins D, Stewart W (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theor Techn 47(11):2075–2084

    Article  Google Scholar 

  49. Soukoulis CM, Wegener M (2011) Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics 5(9):523–530

    Google Scholar 

  50. Zhu J, Gu H, Luo Z, Haldolaarachige N, Young DP, Wei S et al (2012) Carbon nanostructure-derived polyaniline metacomposites: electrical, dielectric, and giant magnetoresistive properties. Langmuir 28(27):10246–10255

    Article  Google Scholar 

  51. Zhu J, Wei S, Zhang L, Mao Y, Ryu J, Mavinakuli P et al (2010) Conductive polypyrrole/tungsten oxide metacomposites with negative permittivity. J Phys Chem C 114(39):16335–16342

    Article  Google Scholar 

  52. Guo J, Gu H, Wei H, Zhang Q, Haldolaarachchige N, Li Y et al (2013) Magnetite–polypyrrole metacomposites: dielectric properties and magnetoresistance behavior. J Phys Chem C 117(19):10191–10202

    Article  Google Scholar 

  53. Zhu J, Wei S, Zhang L, Mao Y, Ryu J, Karki AB et al (2011) Polyaniline-tungsten oxide metacomposites with tunable electronic properties. J Mater Chem 21(2):342–348

    Article  Google Scholar 

  54. Zhu J, Wei S, Ryu J, Guo Z (2011) Strain-sensing elastomer/carbon nanofiber “metacomposites”. J Phys Chem C 115(27):13215–13222

    Article  Google Scholar 

  55. Vazquez M, Adenot-Engelvin AL (2009) Glass-coated amorphous ferromagnetic microwires at microwave frequencies. J Magn Magn Mater 321:2066–2073

    Article  Google Scholar 

  56. Montiel H, Alvarez G, Gutierrez M, Zamorano R, Valenzuela R (2006) The effect of metal-to-glass ratio on the low-field microwave absorption at 9.4 GHz of glass-coated CoFeBSi microwires. IEEE Trans Magn 42(10):3380–3382

    Google Scholar 

  57. Phan M, Peng H, Yu S, Wisnom M (2007) Large enhancement of GMI effect in polymer composites containing Co-based ferromagnetic microwires. J Magn Magn Mater 316(2):e253–e256

    Article  Google Scholar 

  58. Phan MH, Peng HX (2008) Giant magnetoimpedance materials: fundamentals and applications. Prog Mater Sci 53(2):323–420

    Article  Google Scholar 

  59. Qin F, Peng H, Phan M (2010) Wire-length effect on GMI in Co70.3Fe3.7B10Si13Cr3 amorphous glass-coated microwires. Mater Sci Eng B 167(2):129–132

    Article  Google Scholar 

  60. Zhukov A, Zhukova V (2009) Magnetic Properties and Applications of Ferromagnetic Microwires with Amorphous and Nanocrystalline Structure. Nova Science Publishers Inc., New York

    Google Scholar 

  61. Qin F, Peng H-X (2013) Ferromagnetic microwires enabled multifunctional composite materials. Prog Mater Sci 58(2):183–259

    Article  Google Scholar 

  62. Garcia-Miquel H, Carbonell J, Boria V, Sánchez-Dehesa J (2009) Experimental evidence of left handed transmission through arrays of ferromagnetic microwires. Appl Phys Lett 94:054103

    Article  Google Scholar 

  63. Chen J, Tang D, Zhang B, Yang Y, Lu M, Lu H, Lu F, Xu W (2007) Left-handed materials made of dilute ferromagnetic wire arrays with gyrotropic tensors. J Appl Phys 102:023106

    Article  Google Scholar 

  64. Carbonell J, García-Miquel H, Sánchez-Dehesa J (2010) Double negative metamaterials based on ferromagnetic microwires. Phys Rev B 81:024401

    Article  Google Scholar 

  65. Garcia-Miquel H, Carbonell J, Sanchez-Dehesa J (2010) Left handed material based on amorphous ferromagnetic microwires tunable by dc current. Appl Phys Lett 97:094102

    Article  Google Scholar 

  66. Labrador A, Gómez-Polo C, Pérez-Landazábal JI, Zablotskii V, nigo Ederra I, Gonzalo R, Badini-Confalonieri G, Vázquez M (2010) Magnetotunable left-handed FeSiB ferromagnetic microwires. Opt Lett 35:2161–2163

    Google Scholar 

  67. Sarychev AK, Shalaev VM (2000) Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites. Phys Rep 335:275–371

    Article  Google Scholar 

  68. Ivanov AV, Shalygin AN, Galkin VY, Vedyayev AV (2009) Rozanov3 KN. Metamaterials with tunable negative refractive index fabricated from amorphous ferromagnetic microwires: magnetostatic interaction between microwires. PIERS. ONLINE 5:649–652

    Google Scholar 

  69. Kittel C (1948) On the theory of ferromagnetic resonance absorption. Phys Rev 73:155

    Article  Google Scholar 

  70. Adenot-Engelvin AL, Dudek C, Acher O (2005) Microwave permeability of metamaterials based on ferromagnetic composites. J Magn Magn Mater 300:33–37 (The third Moscow international symposium on magnetism 2005)

    Google Scholar 

  71. Adenot-Engelvin AL, Dudek C, Toneguzzo P, Acher O (2007) Microwave properties of ferromagnetic composites andmetamaterials. J Eur Ceram Soc 27:1029–1033

    Article  Google Scholar 

  72. Qin F, Peng HX, Tang J, Qin LC (2010) Ferromagnetic microwires enabled polymer composites for sensing applications. Compos A Appl Sci Manuf 41:1823–1828

    Article  Google Scholar 

  73. Liu L, Kong L, Lin G, Matitsine S, Deng C (2008) Microwave permeability of ferromagnetic microwires composites/metamaterials and potential applications. IEEE Trans Magn 44:3119–3122

    Article  Google Scholar 

  74. Panina LV, Ipatov M, Zhukova V, Zhukov A, Gonzalez J (2011) Magnetic field effects in artificial dielectrics with arrays of magnetic wires at microwaves. J Appl Phys 109:053901

    Article  Google Scholar 

  75. Makhnovskiy DP, Panina LV, Mapps DJ (2001) Field-dependent surface impedance tensor in amorphous wires with two types of magnetic anisotropy: helical and circumferential. Phys Rev B 63:144424

    Article  Google Scholar 

  76. Y DI, Jiang J, Du G, Tian B, Bie S, He H (2007) Magnetic and microwave properties of glass-coated amorphous ferromagnetic microwires. Trans Nonferrous Met Soc China 17:1352–1357

    Article  Google Scholar 

  77. Qin FX, Peng HX, Phan MH, Panina LV, Ipatov M, Zhukova V, Zhukov A, Gonzalez J (2011) Smart composites with short ferromagneticmicrowires formicrowave applications. IEEE Trans Magn 47:4481–4484

    Article  Google Scholar 

  78. Vazquez M, Chiriac H, Zhukov A, Panina L, Uchiyama T (2011) On the state-of-the-art in magnetic microwires and expected trends for scientific and technological studies. Physica Status Solidi (A) 208:493–501

    Google Scholar 

  79. Shinjo T, Shigeto K, Nagahama T, Mibu K, Ono T (2000) Studies on magnetization reversal in submicron wires and domain wall behaviors. J Phys Soc Jpn 69:91–98

    Google Scholar 

  80. Otani Y, Kim SG, Fukamichi K, Kitakami O, Shimada Y (1998) Magnetic and transport properties of sub micron ferromagnetic wires. IEEE Trans Magn 34:1096–1098

    Article  Google Scholar 

  81. Chiriac H, Corodeanu S, Lostun M, Ababei G, Ovari TA (2010) Magnetic behavior of rapidly quenched submicron amorphous wires. J Appl Phys 107:09A301

    Article  Google Scholar 

  82. Ovari TA, Corodeanu S, Chiriac H (2011) Domain wall velocity in submicron amorphous wires. J Appl Phys 109:07D502

    Article  Google Scholar 

  83. Chiriac H, Lostun M, Ababei G, Ovari TA (2011) Comparative study of the magnetic properties of positive and nearly zero magnetostrictive submicron amorphous wires. J Appl Phys 109:07B501

    Google Scholar 

  84. Saitoh E, Tanaka M, Miyajima H, Yamaoka T (2003) Domain-wall trapping in a ferromagnetic nanowire network. J Appl Phys 93:7444–7446

    Article  Google Scholar 

  85. Ono T, Ooka Y, Kasai S, Miyajima H, Nakatani N, Hayashi N, Shigeto K, Mibu K, Shinjo T (2001) Magnetization reversal and electric transport in ferromagnetic nanowires. Mater Sci Eng B-Solid State Mater Adv Technol 84:126–132

    Article  Google Scholar 

  86. Chiriac H, Corodeanu S, Lostun M, Stoian G, Ababei G, Ovari TA (2011) Rapidly solidified amorphous nanowires. J Appl Phys 109:063902

    Article  Google Scholar 

  87. Kraus L, Infante G, Frait Z, Vazquez M (2011) Ferromagnetic resonance in microwires and nanowires. Phys Rev B 83:174438

    Google Scholar 

  88. Vega V, Prida VM, Garcia JA, Vazquez M (2010) Torque magnetometry analysis of magnetic anisotropy distribution in ni nanowire arrays. Physica Status Solidi a-Applications and Materials Science 208:553–558

    Article  Google Scholar 

  89. Tartakovskaya EV, Pardavi-Horvath M, Vazquez M (2010) Configurational spin reorientation phase transition in magnetic nanowire arrays. J Magn Magn Mater 322:743–747

    Article  Google Scholar 

  90. Gonzalez-Diaz JB, Garcia-Martin JM, Garcia-Martin A, Navas D, Asenjo A, Vazquez M, Hernandez-Velez M, Armelles G (2009) Plasmon-enhanced magneto-optical activity in ferromagnetic membranes. Appl Phys Lett 94:263101

    Google Scholar 

  91. Pardavi-Horvath M, Si PE, Vazquez M, Rosa WO, Badini G (2008) Interaction effects in permalloy nanowire systems. J Appl Phys 103:07D517

    Google Scholar 

  92. Navas D, Pirota KR, Zelis PM, Velazquez D, Ross CA, Vazquez M (2008) Effects of the magnetoelastic anisotropy in ni nanowire arrays. J Appl Phys 103:07D523

    Article  Google Scholar 

  93. Ramos CA, De Biasi E, Zysler RD, Brigneti EV, Vazquez M (2007) “blocking” effects in magnetic resonance? the ferromagnetic nanowires case. J Magn Magn Mater 316:E63–E66

    Article  Google Scholar 

  94. Prida VM, Pirota KR, Navas D, Asenjo A, Hernandez-Velez M, Vazquez M (2007) Self-organized magnetic nanowire arrays based on alumina and titania templates. J Nanosci Nanotechnol 7:272–285

    Google Scholar 

  95. Gonzalez-Diaz JB, Garcia-Martin A, Armelles G, Navas D, Vazquez M, Nielsch K, Wehrspohn RB, Gosele U (2007) Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays. Adv Mater 19:2643–2647

    Article  Google Scholar 

  96. Ivanov A, Galkin VY, Ivanov VA, Petrov DA, Rozanov KN, Shalygin AN, Starostenko SN (2009) Metamaterials fabricated of amorphous ferromagnetic microwires: negative microwave permeability. Solid State Phenom 152–153:333–336

    Article  Google Scholar 

  97. Luo Y, Peng HX, Qin FX, Ipatov M, Zhukova V, Zhukov A, Gonzalez J (2013) Fe-based ferromagnetic microwires enabled meta-composites. Appl Phys Lett 103:251902

    Article  Google Scholar 

  98. Makhnovskiy D, Zhukov A, Zhukova V, Gonzalez J (2009) Tunable and self-sensing microwave composite materials incorporating ferromagnetic microwires. Adv Sci Technol 54:201–210

    Article  Google Scholar 

  99. Luo Y, Peng H, Qin F, Ipatov M, Zhukova V, Zhukov A et al (2014) Metacomposite characteristics and their influential factors of polymer composites containing orthogonal ferromagnetic microwire arrays. J Appl Phys 115(17):173909

    Article  Google Scholar 

  100. Vázquez M, Zhukov A (1996) Magnetic properties of glass-coated amorphous and nanocrystalline microwires. J Magn Magn Mater 160:223–228

    Article  Google Scholar 

  101. Qin F, Peng H-X, Tang J, Qin L-C (2010) Ferromagnetic microwires enabled polymer composites for sensing applications. Compos A Appl Sci Manuf 41(12):1823–1828

    Article  Google Scholar 

  102. Sampaio L, Sinnecker E, Cernicchiaro G, Knobel M, Vázquez M, Velázquez J (2000) Magnetic microwires as macrospins in a long-range dipole-dipole interaction. Phys Rev B 61(13):8976

    Article  Google Scholar 

  103. Velázquez J, García C, Vázquez M, Hernando A (1996) Dynamic magnetostatic interaction between amorphous ferromagnetic wires. Phys Rev B 54(14):9903

    Article  Google Scholar 

  104. Velázquez J, Vazquez M, Hernando A (1999) Interacting amorphous ferromagnetic wires: a complex system. J Appl Phys 85(5):2768–2774

    Article  Google Scholar 

  105. Kraus L, Frait Z, Ababei G, Chiriac H (2013) Ferromagnetic resonance of transversally magnetized amorphous microwires and nanowires. J Appl Phys 113(18):183907–183908

    Google Scholar 

  106. García-Miquel H, Carbonell J, Sánchez-Dehesa J (2010) Left handed material based on amorphous ferromagnetic microwires tunable by dc current. Appl Phys Lett 97(9):094102–094103

    Google Scholar 

  107. García-Miquel H, Carbonell J, Boria V, Sánchez-Dehesa J (2009) Experimental evidence of left handed transmission through arrays of ferromagnetic microwires. Appl Phys Lett 94(5):054103

    Google Scholar 

  108. Luo Y, Qin F, Scarpa F, Carbonel J, Ipatov M, Zhukova V et al (2015) Hybridized magnetic microwire metacomposites towards microwave cloaking and barcoding applications. ArXiv Preprint arXiv:150607745

  109. Makhnovskiy D, Panina L, Garcia C, Zhukov A, Gonzalez J (2006) Experimental demonstration of tunable scattering spectra at microwave frequencies in composite media containing CoFeCrSiB glass-coated amorphous ferromagnetic wires and comparison with theory. Phys Rev B 74(6):064205

    Article  Google Scholar 

  110. Qin F, Peng H, Fuller J, Brosseau C (2012) Magnetic field-dependent effective microwave properties of microwire-epoxy composites. Appl Phys Lett 101(15):152905

    Google Scholar 

  111. Luo Y, Peng H, Qin F, Adohi B, Brosseau C (2014) Magnetic field and mechanical stress tunable microwave properties of composites containing Fe-based microwires. Appl Phys Lett 104(12):121912

    Article  Google Scholar 

  112. McVay J, Hoorfar A, Engheta N (2006) Space-filling curve RFID tags. In: Radio and wireless symposium. IEEE, pp 199–202

    Google Scholar 

  113. Jalaly I, Robertson I (2005) Capacitively-tuned split microstrip resonators for RFID barcodes. In: Microwave conference, European, vol 2. IEEE, 4pp

    Google Scholar 

  114. Peng H, Qin F, Phan MH, Tang J, Panina L, Ipatov M, Zhukov A, Zhukova V, Gonzalez J (2009) Cobased magnetic microwire and field-tunable multifunctional macro-composites. J Non-Cryst Solids 355:1380–1386

    Article  Google Scholar 

  115. Panina L, Ipatov M, Zhukova V, Zhukov A, Gonzalez J (2010) Microwave metamaterials with ferromagnetic microwires. Appl Phys A Mater Sci Process 103:653–657

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Xin Peng .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peng, HX., Qin, F., Phan, MH. (2016). Microwire-Based Metacomposites. In: Ferromagnetic Microwire Composites. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-29276-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29276-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29274-8

  • Online ISBN: 978-3-319-29276-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics