Skip to main content

Microwave Absorption Behaviour

  • Chapter
  • First Online:
Ferromagnetic Microwire Composites

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1068 Accesses

Abstract

The high-frequency absorption behaviour of amorphous ferromagnetic materials, among others, is of considerable interest for microwave absorber applications (Vazquez and Adenot-Engelvin in J Magn Magn Mater 321:2066–2073, 2009). Since amorphous glass-coated microwires have small dimensions (1–30 µm in diameter), high electrical conductivity (~6×105 S/m), high magnetic permeability (~104), and high mechanical strength (~103MPa), they can be incorporated into polymer-based composites for creating high-performance microwave absorption (Zhang et al. in Mater Sci Eng 175:233–237, 2010; Di et al. in Trans Nonferrous Met Soc China 17:1352–1357, 2007; Marin et al. in J Magn Magn Mater 290–291:1597–1600, 2005) or EMI shielding (Qin et al. in J Appl Phys 108:044510, 2010) composite materials. Compared with dielectric absorbents, magnetic absorbents provide additional magnetic losses and achieve a better impedance match.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vazquez M, Adenot-Engelvin AL (2009) Glass-coated amorphous ferromagnetic microwires atmicrowavefrequencies. J Magn Magn Mater 321:2066–2073

    Article  Google Scholar 

  2. Zhang Z, Wang C, Zhang Y, Xie J (2010) Microwave absorbing properties of composites filled withglass-coated Fe69Co10Si8B13 amorphous microwire. Mater Sci Eng 175:233–237

    Google Scholar 

  3. Di Y, Jiang J, Du G, Tian B, Bie S, He H (2007) Magnetic and microwave properties of glass-coated amorphous ferromagnetic microwires. Trans Nonferrous Met Soc China 17:1352–1357

    Article  Google Scholar 

  4. Marin P, Cortina D, Hernando A (2005) High-frequency behavior of amorphous microwires and its applications. J Magn Magn Mater 290–291:1597–1600

    Article  Google Scholar 

  5. Qin F, Peng H, Pankratov N, Phan M, Panina L, Ipatov M, Zhukova V, Zhukov A, Gonzalez J (2010) Exceptional EMI shielding properties of ferromagnetic microwires enabled polymer composites. J Appl Phys 108:044510

    Article  Google Scholar 

  6. Skarman B, Ye Z, Jansson P (2011) Soft magnetic composite materials. US Patent 8,075,710

    Google Scholar 

  7. Qin F, Peng H, Chen Z, Hilton G (2013) Microwave absorption of structural polymer composites containing glass-coated amorphous microwires. IEEE Trans Magn 49:4245–4248

    Article  Google Scholar 

  8. Liu L, Rozanov K, Abshinova M (2013) Tunable properties of microwire composites at microwavefrequency. Appl Phys A 110:275–279

    Article  Google Scholar 

  9. Ababei G, Chiriac H, David V, Dafinescu V, Nica I (2013) Omni-directional selective shielding material based on amorphous glass coated microwires. Rev Sci Instrum 83:014701–014706

    Google Scholar 

  10. Liberal I, Ederra I, Gomez-Polo C, Labrador A, Perez-Landazabal JI, Gonzalo R (2011) Theoretical modeling and experimental verification of the scattering from a ferromagnetic microwire. IEEE Trans Microwave Theor Tech 59:517–526

    Article  Google Scholar 

  11. Dawson TW, Caputa K, Stuchly MA, Shepard RB, Kavet R, Sastre A (2002) Pacemaker interferenceby magnetic fields at power line frequencies. IEEE Trans Biomed Eng 49:254–262

    Article  Google Scholar 

  12. Colin R (1966) Foundations of mIcrowave engineering. McGraw Hill, New York

    Google Scholar 

  13. Vinoy KJ, Jha RM (1996) Radar absorbing materials - From theory to design and characterization. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  14. Oh JH, Oh KS, Kim CG, Hong CS (2004) Design of radar absorbing structures using glass/epoxy composite containing carbon black in x-band frequency ranges. Compos B Eng 35:49–56

    Article  Google Scholar 

  15. Shen G, Xu Z, Li Y (2006) Absorbing properties and structural design of microwave absorbers based on w-type la-doped ferrite and carbon fiber composites. J Magn Magn Mater 301:325–330

    Article  Google Scholar 

  16. Gerber R, Wright C (eds) (1992) GA. Applied magnetism. Kluwer Academic Publishers, Doldrecht

    Google Scholar 

  17. Kittel C (1948) On the theory of ferromagnetic resonance absorption. Phys Rev 73:155

    Article  Google Scholar 

  18. Maeda T, Sugimoto S, Kagotani T, Tezuka N, Inomata K (2004) Effect of the soft/hard exchangeinteraction on natural resonance frequency and electromagnetic wave absorption of the rareearth-iron-boron compounds. J Magn Magn Mater 281:195–205

    Article  Google Scholar 

  19. Acher O, Dubourg S (2008) Generalization of snoek’s law to ferromagnetic films and composites. Phys Rev B 77:104440

    Article  Google Scholar 

  20. Makhnovskiy DP, Panina LV (2005) Field and stress tunable microwave composite materials based on ferromagnetic wires. In: Murray VN (2005) Progress in ferromagnetism research. Nova Science Publishers Inc., Hauppauge

    Google Scholar 

  21. Starostenko S, Rozanov K, Osipov A (2006) Microwave properties of composites with glass coated amorphous magnetic microwires. J Magn Magn Mater 298:5–64

    Article  Google Scholar 

  22. Fan ZJ, Luo GH, Zhang ZF, Zhou L, Wei F (2006) Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater Sci Eng B-Solid State Mater Adv Technol 132:85–89

    Article  Google Scholar 

  23. Liu ZF, Bai G, Huang Y, Li FF, Ma YF, Guo TY, He XB, Lin X, Gao HJ, Chen YS (2007) Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J Phys Chem C 111:13696–13700

    Article  Google Scholar 

  24. Wu KH, Ting TH, Wang GP, Ho WD, Shih CC (2008) Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites. PolymerDegrad Stability 93:483–488

    Article  Google Scholar 

  25. Baranov SA (1998) Use of a microconductor with natural ferromagnetic resonance for radio absorbing materials. Tech Phys Lett 24:21–23

    Google Scholar 

  26. Liu L, Yang Z, Kong L, Li P, Poo C (2012) High permittivity and shielding effectiveness of microwire composites with optical transparency. In: 2012 Asia-Pacific symposium on electromagnetic compatibility (APEMC). IEEE, pp 633–636

    Google Scholar 

  27. Liu L, Matitsine S, Gan YB, Rozanov KN (2007) Cluster effect in frequency selective composites with randomly distributed long conductive fibres. J Phys D Appl Phys 40:7534

    Article  Google Scholar 

  28. Qin F, Peng H, Chen Z, Wang H, Zhang J, Hilton G (2013) Optimization of microwire/ glass-fiber reinforced polymer composites for wind turbine application. Appl Phys A Mater Sci Process. 10.1007/s00339-013-7820-2

  29. Ponomarenko V, Popov V, Qin F (2013) Microwire-based analog of a quarter-wavelength radio absorber. Radio Electron Commun Syst 56:285–289

    Google Scholar 

  30. Brosseau C, Queffelec P, Talbot P (2001) Microwave characterization of filled polymers. J Appl Phys 89:4532–4540

    Article  Google Scholar 

  31. Qin FX, Peng HX (2013) Ferromagnetic microwires enabled multifunctional composite materials. Prog Mater Sci 58:183–259

    Article  Google Scholar 

  32. Qin FX, Peng HX, Phan MH, Panina LV, Ipatov M, Zhukov A (2012) Effects of wire properties on the field-tunable behaviour of continuous-microwire composites. Sens Actuators A 178:118–125

    Article  Google Scholar 

  33. Phan MH, Peng HX (2008) Giant magneto impedance materials: fundamentals and applications. Prog Mater Sci 53:323–420

    Article  Google Scholar 

  34. Chizhik A, Zhukov A, Blanco JM, Szymczak R, Gonzalez J (2002) Interaction between Fe-richferromagnetic glass-coated microwires. J Magn Magn Mater 249:99–103

    Article  Google Scholar 

  35. Liberal I, Nefedov I, Ederra I, Gonzalo R, Tretyakov S (2011) Electromagnetic response and homogenization of grids of ferromagnetic microwires. J Appl Phys 110:064909

    Article  Google Scholar 

  36. Qin F, Peng HX, Tang J, Qin LC (2010) Ferromagnetic microwires enabled polymer composites for sensing applications. Compos A Appl Sci Manuf 41:1823–1828

    Article  Google Scholar 

  37. Qin F, Brosseau C (2012) A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 111:061301–061324

    Article  Google Scholar 

  38. Marin P, Cortina D, Hernando A (2008) Electromagnetic wave absorbing material based on magnetic microwires. IEEE Trans Magn 44:3934–3937

    Article  Google Scholar 

  39. Krug F, Lewke B (2009) Electromagnetic interference on large wind turbines. Energies 2:1118–1129

    Article  Google Scholar 

  40. Ivanov AV, Shalygin AN, Galkin VY, Vedyayev AV (2009) Rozanov3 KN. Meta materials with tunable negative refractive index fabricated from amorphous ferromagnetic microwires: magneto static interaction between microwires. PIERS ONLINE 5:649–652

    Article  Google Scholar 

  41. Di Y, Jiang J, Bie S, Yuan L, Davies HA, He H (2008) Collective length effect on the magneto static properties of arrays of glass-coated amorphous alloy microwires. J Magn Magn Mater 320:534–539

    Article  Google Scholar 

  42. Zhukov A, Zhukova V (2009) Magnetic properties and applications of ferromagnetic mircowires with amorphous and nano crystalline structure. Nova Science Publishers, Inc., New York

    Google Scholar 

  43. Usov N, Antonov A, Dykhne A, Lagar’kov A (1998) Stress dependence of the hysteresis loops ofco-rich amorphous wire. J Phys: Condens Matter 10:2453

    Google Scholar 

  44. Baranov S (2009) Radio absorption properties of amorphous microwires. Moldavian J Phys Sci 8:332–336

    Google Scholar 

  45. Garcia D, Raposo V, Montero O, Iniguez JI (2006) Influence of magnetostriction constant on magneto impedance-frequency dependence. Sens Actuators A 129:227–230

    Article  Google Scholar 

  46. Yildiz F, Rameev BZ, Tarapov SI, Tagirov LR, Aktas B (2002) High-frequency magneto resonance absorption in amorphous magnetic microwires. J Magn Magn Mater 247:222–229

    Article  Google Scholar 

  47. Tulin V, Astahov M, Rodin A (2003) Amorphous ferromagnetic microwire in the microwave cavity. Ferromagnetic resonance and absorption. J Magn Magn Mater 258(C259):201 – 203 (Second Moscow international symposium on magnetism)

    Google Scholar 

  48. Kraus L, Infante G, Frait Z, Vazquez M (2011) Ferromagnetic resonance in microwires and nanowires. Phys Rev B 83:174438

    Google Scholar 

  49. Baranov S, Yamaguchi M, Garcia K, Vazquez M (2010) Application of amorphous microwires for electromagnetic shieldi. Moldavian J Phys Sci 9:76–82

    Google Scholar 

  50. Zhukova V, Usov NA, Zhukov A, Gonzalez J (2002) Length effect in a co-rich amorphous wire. Phys Rev B 65:134407

    Article  Google Scholar 

  51. Baranov SA, Yamaguchi M, Garcia KL, Vazquez M (2008) Dimensional absorption high-frequency properties of the cast glass coated microwires. Surf Eng Appl Electrochem 44:425–427

    Article  Google Scholar 

  52. Han M, Liang D, Deng L (2011) Fabrication and electromagnetic wave absorption properties of amorphousfe[sub 79]si[sub 16]b[sub 5]microwires. Appl Phys Lett 99:082503

    Article  Google Scholar 

  53. Qin FX, Brosseau C, Peng HX (2013) Microwave properties of carbon nanotube/microwire/rubbermultiscale hybrid composites. Chem Phys Lett 579:40–44

    Article  Google Scholar 

  54. Torrejon J, Badini-Confalonieri GA, Vazquez M (2009) Double-absorption ferromagnetic resonance in biphase magnetic microwires. J Appl Phys 106:023913

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Xin Peng .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peng, HX., Qin, F., Phan, MH. (2016). Microwave Absorption Behaviour. In: Ferromagnetic Microwire Composites. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-29276-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29276-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29274-8

  • Online ISBN: 978-3-319-29276-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics