Skip to main content

Basic Magnetic and Mechanical Properties of Microwire Composites

  • Chapter
  • First Online:
Ferromagnetic Microwire Composites

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1038 Accesses

Abstract

Due to the inclusion of magnetic fillers, the polymer composite becomes magnetic, i.e. responsive to the external static or dynamic magnetic field. Although most studies are devoted to the dynamic response of these kinds of heterogeneous composite media (Sihvola and Lindell in Prog Electromagn Res 1–36, 1992), i.e. complex permeability, it is worth exploring the static magnetic properties of microwire composites for two reasons: (i) the composite with wire arrays could be of some application interest in the magnetic sensing field, as quite a few studies are devoted to the microwire arrays (Laroze et al. in Nanotechnology 18:415708, 2007; Di et al. in J Magn Magn Mater 320:534–539, 2008; Vázquez in Physica B 299:302–313, 2001; Sampaio et al. in Phys Rev B 61:8976–8983, 2000; Velazquez et al. in J Mater Res 11:2499–2505, 1996; Velazquez et al. in J Appl Phys 85:2768–2774, 1999). (ii) ac permeability is associated with the static magnetic properties such as saturation magnetisation and the anisotropy field, according to the modified model based on Snoek’s law proposed by Acher et al. in Phys Rev B 77:104440, 2008, Acher et al. in Phys Rev B 62:11324–11327 2000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sihvola A, Lindell I (1992) Effective permeability of mixtures Prog Electromagn Res 1–36

    Google Scholar 

  2. Laroze D, Escrig J, Landeros P, Altbir D, Vázquez M, Vargas P (2007) A detailed analysis of dipolar interactions in arrays of bi-stable magnetic nanowires. Nanotechnology 18:415708

    Article  Google Scholar 

  3. Di Y, Jiang J, Bie S, Yuan L, Davies HA, He H (2008) Collective length effect on the magnetostatic properties of arrays of glass-coated amorphous alloy microwires. J Magn Magn Mater 320:534–539

    Article  Google Scholar 

  4. Vázquez M (2001) Soft magnetic wires. Phys B 299:302–313

    Article  Google Scholar 

  5. Sampaio LC, Sinnecker EHCP, Cernicchiaro GRC, Knobel M, Vázquez M, Velázquez J (2000) Magnetic microwires as macrospins in a long-range dipole-dipole interaction. Phys Rev B 61:8976–8983

    Article  Google Scholar 

  6. Velazquez J, Vazquez M, Zhukov A (1996) Magnetoelastic anisotropy distribution in glass-coated microwires. J Mater Res 11:2499–2505

    Article  Google Scholar 

  7. Velazquez J, Garcia C, Vazquez M, Hernando A (1999) Interacting amorphous ferromagnetic wires: a complex system. J Appl Phys 85:2768–2774

    Article  Google Scholar 

  8. Acher O, Dubourg S (2008) Generalization of snoek’s law to ferromagnetic films and composites. Phys Rev B 77:104440

    Article  Google Scholar 

  9. Acher O, Adenot AL (2000) Bounds on the dynamic properties of magnetic materials. Phys Rev B 62:11324–11327

    Article  Google Scholar 

  10. Phan M, Peng H, Wisnom M, Mellor P (2007) Optimizing the nano-structure of magnetic micro-wires for multifunctional macro-composites. AIAA-2007-2032 48th Qin, Phan and Peng, submitted to Springer AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii

    Google Scholar 

  11. Di Y, Jiang J, Du G, Tian B, Bie S, He H (2007) Magnetic and microwave properties of glass-coated amorphous ferromagnetic microwires. Trans Nonferrous Met Soc China 17:1352–1357

    Google Scholar 

  12. Velázquez J (1996) Dynamic magnetostatic interaction between amorphous ferromagnetic wires. Phys Rev B 54:9903–9911

    Article  Google Scholar 

  13. Qin F, Peng H, Popov V, Phan M (2011) Giant magneto-impedance and stress-impedance effects of microwire composites for sensing applications. Solid State Commun 151:293–296

    Article  Google Scholar 

  14. Qin FX, Peng HX, Popov VV, Panina LV, Ipatov M, Zhukova V, Zhukov A, Gonzalez J (2011) Stress tunable properties of ferromagnetic microwires and their multifunctional composites. J Appl Phys 108:07A310

    Google Scholar 

  15. Zhukova V, Zhukov A, Blanco JM, Gonzalez J, Gomez-Polo C, Vazquez M (2003) Effect of stress applied on the magnetization profile of Fe–Si–B amorphous wire. J Appl Phys 93:7208–7210

    Article  Google Scholar 

  16. Zhukov A, Ipatov M, Gonzalez J, Blanco JM, Zhukova V (2009) Recent advances in studies of magnetically soft amorphous microwires. J Magn Magn Mater 321:822–825

    Article  Google Scholar 

  17. Zhukova V, Larin VS, Zhukov A (2003) Stress induced magnetic anisotropy and giant magnetoimpedance in Fe-rich glass-coated magnetic microwires. J Appl Phys 94:1115–1118

    Article  Google Scholar 

  18. Vazquez M, Hernando A (1996) A soft magnetic wire for sensor applications. J Phys D: Appl Phys 29:939–949

    Article  Google Scholar 

  19. Zhukova V, Cobeno AF, Zhukov A, Blanco JM, Larin V, Gonzalez J (1999) Coercivity of glass-coated Fe73.4-xCu1Nb3.1Si13.4 + xB9.1 (0 <=x <=1.6) microwires. Nanostruct Mater 11:1319–1327

    Google Scholar 

  20. Chizhik A, Zhukov A, Blanco JM, Szymczak R, Gonzalez J (2002) Interaction between Fe-rich ferromagnetic glass-coated microwires. J Magn Magn Mater 249:99–103 (Qin, Phan and Peng, submitted to Springer)

    Google Scholar 

  21. Amalou F, Gijs MAM (2002) Giant magnetoimpedance in trilayer structures of patterned magnetic amorphous ribbons. Appl Phys Lett 81:1654–1656

    Article  Google Scholar 

  22. Kraus L, Chiriac H, Ovari TA (2000) Magnetic properties of stress-joule-heated amorphous fecrbsimicrowire. J Magn Magn Mater 215–216:343–345

    Article  Google Scholar 

  23. Liu J, Cao F, Chen D, Xue X, Sun J (2012) Multiangle combined magnetic-field annealing of Cobased amorphous microwires for sensor applications. Phys Status Solidi A 209:984–989

    Article  Google Scholar 

  24. Phan M, Peng H, Yu S, Wisnom M (2007) Large enhancement of GMI effect in polymer composites containing Co-based ferromagnetic microwires. J Magn Magn Mater 316:e253–e256

    Article  Google Scholar 

  25. Qin F, Peng HX, Tang J, Qin LC (2010) Ferromagnetic microwires enabled polymer composites for sensing applications. Compos A Appl Sci Manuf 41:1823–1828

    Article  Google Scholar 

  26. Garcia C, Zhukova V, Zhukov A, Usov N, IpatovM, Gonzalez J, Blanco J (2007) Effect of interaction on giant magnetoimpedance effect in a system of few thin wires. Sens Lett 5:10–12

    Google Scholar 

  27. Chaturvedi A, Stojak K, Laurita N, Mukherjee P, Srikanth H, Phan MH (2012) Enhanced magnetoimpedance effect in co-based amorphous ribbons coated with carbon nanotubes. J Appl Phys 111:07E507

    Article  Google Scholar 

  28. Liu J, Wang X, Qin F, Xing D, Cao F, Peng H, Xiang X, Sun J (2011) Gmi output stability of glasscoated co-based microwires for sensor application. PIERS Online 7:661–665

    Google Scholar 

  29. Liu JS, Sun JF, Xing DW, Xue X, Zhang SL, Wang H, Wang XD (2011) Experimental study on the effect of wire bonding by cu electroplating on gmi stability of co-based amorphous wires. Physica status solidi (a) 208:530–534

    Google Scholar 

  30. Qin F, Peng H, Phan M (2010) Wire-length effect on gmi in co70.3fe3.7b10si13cr3 amorphous glasscoated microwires. Mater Sci Eng B 167:129 – 132

    Google Scholar 

  31. Severino AM, Gomez-Polo C, Marin P, Vazquez M (1992) Influence of the sample length on the switching process of magnetostrictive amorphous wire. J Magn Magn Mater 103:117–125

    Article  Google Scholar 

  32. Vazquez M, Li YF, Chen DX (2002) Influence of the sample length and profile of the magnetoimpedance effect in fecrsibcunb ultrasoft magnetic wires. J Appl Phys 91:6539–6544

    Article  Google Scholar 

  33. Zhukova V, Usov NA, Zhukov A, Gonzalez J (2002) Length effect in a co-rich amorphous wire. Phys Rev B 65:134407

    Article  Google Scholar 

  34. Ajayan PM, Tour JM (2007) Materials science: nanotube composites. Nature 447:1066–1068

    Article  Google Scholar 

  35. Coisson M, Tiberto P, Vinai F, Kane S (2003) Influence of stress-annealing on magneto-transport properties in co-based amorphous ribbons. Sens Actuators A 106:199–202

    Article  Google Scholar 

  36. Ohnuma M, Hono K, Yanai T, Nakano M, Fukunaga H, Yoshizawa Y (2005) Origin of the magnetic anisotropy induced by stress annealing in Fe-based nanocrystalline alloy. Appl Phys Lett 86:152513

    Article  Google Scholar 

  37. Fels A, Friedrich K, Hornbogen E (1984) Reinforcement of a brittle epoxy resin by metallic glass ribbons. J Mater Sci Lett 3:569–574

    Article  Google Scholar 

  38. Mandal K, Mandal SP, Vázquez M, Puerta S, Hernando A (2002) Giant magnetoimpedance effect in a positive magnetostrictive glass-coated amorphous microwire. Phys Rev B 65:064402

    Article  Google Scholar 

  39. Blanco JM, Barbon PG, Gonzalez J, Gomez-Polo C, Vazquez M (1992) Stress induced magnetic anisotropy in non-magnetostrictive amorphous wires. J Magn Magn Mater 104–107:137–138

    Article  Google Scholar 

  40. Cobeno AF, Zhukov A, Blanco JM, Larin V, Gonzalez J (2001) Magnetoelastic sensor based on GMI of amorphous microwire. Sens Actuators A 91:95–98

    Article  Google Scholar 

  41. Shen L, Uchiyama T, Mohri K, Kita E, Bushida K (1997) Sensitive stress-impedance micro sensor using amorphous magneostrictive wire. IEEE Trans Magn 33:3355–3357

    Article  Google Scholar 

  42. Hu J, Qin H, Chen J, Zhang Y (2003) Giant stress-impedance effect in Fe73.5CuNb3-xVxSi13.5B9 amorphous ribbons. J Magn Magn Mater 266:290–295

    Article  Google Scholar 

  43. Antonov AS, Borisov VT, Borisov OV, Prokoshin AF, Usov NA (2000) Residual quenching stresses in glass-coated amorphous ferromagnetic microwires. J Phys D Appl Phys 33:1161

    Article  Google Scholar 

  44. Goto T, Nishio K (1987) Mechanical properties of high strength and high toughness metallic filament composites with epoxy and poly(ether ether ketone) matrices. J Mater Sci 22:2357–2362

    Article  Google Scholar 

  45. Goto T, Tsubouchi H (1988) High temperature mechanical properties of high toughness metallic filament composites with polyimide and epoxy matrices. J Mater Sci 23:3630–3635

    Article  Google Scholar 

  46. Qin F, Peng H (2010) Macro-composites containing ferromagnetic microwires for structural health monitoring. Nano Commun Netw 1:126–130

    Article  Google Scholar 

  47. Qin F, Peng H, ZChen, Wang H, Zhang J, Hilton G (2013) Optimization of microwire/ glass-fiber reinforced polymer composites for wind turbine application. Appl Phys A Mater Sci Process. 10.1007/s00339-013-7820-2

  48. Guinard S, Allix O, Guedra-Degeorges D, Vinet A (2002) A 3d damage analysis of low-velocity impacts on laminated composites. Compos Sci Technol 62:585–589

    Article  Google Scholar 

  49. Breen C, Guild F, Pavier M (2005) Impact of thick cfrp laminates: the effect of impact velocity. Compos A Appl Sci Manuf 36:205–211

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Xin Peng .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peng, HX., Qin, F., Phan, MH. (2016). Basic Magnetic and Mechanical Properties of Microwire Composites. In: Ferromagnetic Microwire Composites. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-29276-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29276-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29274-8

  • Online ISBN: 978-3-319-29276-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics