Skip to main content

Electrochemical Biosensors for Chemical Warfare Agents

  • Chapter
  • First Online:
Biosensors for Security and Bioterrorism Applications

Abstract

Since the introduction of modern CWAs at the beginning of 20th century, there has been a continuous interest in the development of robust and reliable analytical tools for the detection of these agents, to provide early alarm in case of terroristic attacks, as well as to monitor their presence in the environment and prevent contamination. Nevertheless, some powerful analytical techniques, including chromatographic methods and mass spectrometry, may not be well suitable for field applications and fast early warning, due to the lack of portability, power requirements, long response time and expensive procedures. In this context, electrochemical (bio)sensors offer advantages in terms of high sensitivity, miniaturization, integration, low cost, and power requirements. The aim of this chapter is to highlight the important issues of electrochemical (bio)sensors for fast and cost-effective detection of CWAs in the field, considering the main advantages and limitations of this technology, and the last trends in nanotechnology, lab-on-chip, and functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ganesan K, Raza SK, Vijyaraghavan R (2010) Chemical warfare agents. J Pharm Bioallied Sci 2:166–178

    Article  Google Scholar 

  2. Szinicz L (2005) History of chemical and biological warfare agents. Toxicology 214:167–181

    Article  Google Scholar 

  3. Guilbault GG, Kramer DN, Jr PL (1962) Cannon, electrical determination of organophosphorous compounds. Anal Chem 34:1437–1439

    Article  Google Scholar 

  4. Fennouh S, Casimiri V, Burstein C (1997) Increased paraoxon detection with solvents using acetylcholinesterase inactivation measured with choline oxidase biosensor. Biosens Bioelectron 12:97–104

    Article  Google Scholar 

  5. Cremisini C, Di Sario S, Mela J, Pilloton R, Palleschi G (1995) Evaluation of the use of free and immobilised acetylcholinesterase for paraoxon detection with an amperometric choline oxidase biosensor. Anal Chim Acta 311:273–280

    Article  Google Scholar 

  6. Ciucu AA, Negulescu C, Baldwin RP (2003) Detection of pesticides using an amperometric biosensor based on ferophthalocyanine modified carbon paste electrode immobilised bienzymatic system. Biosens Bioelectron 18:303–310

    Article  Google Scholar 

  7. Ricci F, Amine A, Palleschi G, Moscone D (2003) Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosens Bioelectron 18:165–174

    Article  Google Scholar 

  8. Upadhyay S, Rama Rao G, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan R (2009) Immobilization of acetylcholinesterase–choline oxidase on a gold–platinum bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates and nerve agents. Biosens Bioelectron 25:832–838

    Google Scholar 

  9. Lee WE, Thompson HG, Hall JG, Bader DE (2000) Rapid detection and identification of biological and chemical agents by immunoassay, gene probe assay and enzyme inhibition using a silicon-based biosensor Biosens. Bioelectron. 14:795–804

    Article  Google Scholar 

  10. Pohanka M, Adam V, Kizek R (2013) An Acetylcholinesterase-based chronoamperometric biosensor for fast and reliable assay of nerve agents. Sensors 13:11498–11506

    Article  Google Scholar 

  11. Pohanka M, Dobes P, Drtinova L, Kuca K (2009) Nerve agents assay using cholinesterase based biosensor. Electroanalysis 21:1177–1182

    Article  Google Scholar 

  12. Arduini F, Ricci F, Amine A, Moscone D, Palleschi G (2007) Fast, sensitive and cost-effective detection of nerve agents in the gas phase using a portable instrument and an electrochemical biosensor. Anal Bioanal Chem 388:1049–1057

    Article  Google Scholar 

  13. Mulchandani A, Mulchandani P, Chen W, Wang J, Chen L (1999) Amperometric thick-film strip electrodes for monitoring organophosphate nerve agents based on immobilized organophosphorus hydrolase. Anal Chem 71:246–2249

    Article  Google Scholar 

  14. Mulchandani P, Chen W, Mulchandani A (2006) Microbial biosensor for direct determination of nitrophenyl-substituted organophosphate nerve agents using genetically engineered Moraxella sp. Anal Chim Acta 568:217–221

    Article  Google Scholar 

  15. Wang J, Krause R, Block K, Musameh M, Mulchandani A, Schoning MJ (2003) Flow injection amperometric detection of OP nerve agents based on an organophosphorus/hydrolase biosensor detector. Biosens Bioelectron 18:255–260

    Article  Google Scholar 

  16. Choi BG, Park H, Park TJ, Yang MH, Kim JS, Jang SY, Heo NS, Yup Lee S, Kong J, Hong W (2010) Solution chemistry of self-assembled graphene nanohybrids for high- performance flexible biosensors. ACS Nano 4:2910–2918

    Google Scholar 

  17. Du D, Wang J, Wang L, Lu D, Lin Y (2012) Integrated lateral flow test strip with electrochemical sensor for quantification of phosphorylated cholinesterase: biomarker of exposure to organophosphorus agents. Anal Chem 84:1380–1385

    Article  Google Scholar 

  18. Liu G, Lin Y (2005) Electrochemical stripping analysis of organophosphate pesticides and nerve agents. Electrochem Commun 7:339–343

    Article  Google Scholar 

  19. Liu G, Lin Y (2005) Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal Chem 77:5894–5901

    Article  Google Scholar 

  20. Mansour Razavi S, Salamati P, Saghafinia M, Abdollahi M (2012) A review on delayed toxic effects of sulfur mustard in Iranian veterans. J. Pharm Sci 20:51–59

    Google Scholar 

  21. Haines DD, Fox SC (2014) Acute and long-term impact of chemical weapons: lessons from the Iran-Iraq war. Forensic Sci Rev 26:97–114

    Google Scholar 

  22. Fu D, Calvo JA, Samson LD (2012) Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat Rev Cancer 12:104–120

    Google Scholar 

  23. Roshan R, Rahnama P, Ghazanfari Z, Montazeri A, Soroush MR, Naghizadeh MM, Melyani M, Tavoli A, Ghazanfari T (2013) Long-term effects of sulfur mustard on civilians’ mental health 20 years after exposure (The Sardasht-Iran Cohort Study). Health Qual Life Outcomes 11:69–76

    Google Scholar 

  24. Zhang SW, Swager TM (2003) Fluorescent detection of chemical warfare agents: Functional group specific ratiometric chemosensors. JACS 125:3420–3421

    Article  Google Scholar 

  25. Burnworth M, Rowan SJ, Weder C (2007) Fluorescent sensors for the detection of chemical warfare agents. Chemistry: A Eur J 13:7828–7836

    Article  Google Scholar 

  26. McGill RA, Nguyen VK, Chung R, Shaffer RE, DiLella D, Stepnowski D, Melsna TE, Venezky DL, Dominguez D (2000) The “NRL-SAWRHINO”: a nose for toxic gases. Sens Actuat B 65:10–13

    Google Scholar 

  27. Singh VV, Nigam AK, Boopathi M, Pandey P, Singh B, Vijayaraghavan R (2012) In situ electrochemical sensing of 2-chloroethyl ethyl sulphide a CWWA simulant using CuPc/RTIL composite gold electrode. Sens Actuat B 161:1000–1009

    Google Scholar 

  28. Singh VV, Nigam AK, Yadav SS, Tripathi BK, Srivastava A, Boopathi M, Singh B (2013) Graphene oxide as carboelectrocatalyst for in situ electrochemical oxidation and sensing of chemical warfare agent simulant. Sens Actuat B 188:1218–1224

    Article  Google Scholar 

  29. Arduini F, Scognamiglio V, Covaia C, Amine A, Moscone D, Palleschi G (2015) A choline oxidase amperometric bioassay for the detection of mustard agents based on screen-printed electrodes modified with Prussian blue nanoparticles. Sensors 15:4353–4367

    Article  Google Scholar 

  30. Lindsay AE, Greenbaum AR, O’Hare D (2004), Analytical techniques for cyanide in blood and published blood cyanide concentrations from healthy subjects and fire victims. Anal Chim Acta 511:185–195

    Article  Google Scholar 

  31. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=72&tid=19. Accessed 31 Oct 2015

  32. Abbaspour A, Asadi M, Ghaffarinejad A, Safaei E (2005) A selective modified carbon paste electrode for determination of cyanide using tetra-3, 4-pyridinoporphyrazinatocobalt (II). Talanta 66:931–936

    Article  Google Scholar 

  33. Taheri A, Noroozifar M, Khorasani-Motlagh M (2009) Investigation of a new electrochemical cyanide sensor based on Ag nanoparticles embedded in a three-dimensional sol–gel. J Electroanal Chem 628:48–54

    Article  Google Scholar 

  34. Zacharis CK, Tzanavaras PD, Voulgaropoulos AN, Karlberg B (2009) Amperometric determination of cyanides at the low ppb level by automated preconcentration based on gas diffusion coupled to sequential injection analysis. Talanta 77:1620–1626

    Article  Google Scholar 

  35. http://www.globalsecurity.org/wmd/intro/cw-choking.htm. Accessed 31 Oct 2015

  36. Feng D, Zhang Y, Shi W, Li X, Ma H (2010) A simple and sensitive method for visual detection of phosgene based on the aggregation of gold nanoparticles. Chem Commun 46:9203–9205

    Article  Google Scholar 

  37. Virji S, Kojima R, Fowler JD, Villanueva JG, Kaner RB, Weiller BH (2009) Polyaniline nanofiber composites with amines: Novel materials for phosgene detection. Nano Res 2:135–142

    Article  Google Scholar 

  38. Savage AC, Buckley N, Halliwell J, Gwenin C (2015) Botulinum neurotoxin serotypes detected by electrochemical impedance spectroscopy. Toxins 7:1544–1555

    Article  Google Scholar 

  39. Chan CY, Guo J, Sun C, Tsang MK, Tian F, Hao J, Chen S, Yang M (2015) A reduced graphene oxide-Au based electrochemical biosensor for ultrasensitive detection of enzymatic activity of botulinum neurotoxin A. Sens Actuat B 220:131–137

    Google Scholar 

  40. Halliwell J, Savage AC, Buckley N, Gwenin C (2014) Electrochemical impedance spectroscopy biosensor for detection of active botulinum neurotoxin. Sens Bio-Sens Res 2:12–15

    Article  Google Scholar 

  41. Cunningham JC, Scida K, Kogan MR, Wang B, Ellington AD, Crooks RM (2015) Paper diagnostic device for quantitative electrochemical detection of ricin at picomolar levels. Lab Chip 15:3707–3715

    Article  Google Scholar 

  42. Suresh S, Gupta M, Kumar GA, Rao VK, Kumar O, Ghosal P (2012) Synergic effect of multi-walled carbon nanotubes and gold nanoparticles towards immunosensing of ricin with carbon nanotube–gold nanoparticles–chitosan modified screen printed electrode. Analyst 137:4086–4092

    Article  ADS  Google Scholar 

  43. Stevens RC, Soelberg SD, Eberhart B-TL, Spencer S, Wekell JC, Chinowsky TM et al (2007) Detection of the toxin domoic acid from clam extracts using a portable surface plasmon resonance biosensor. Harmful Algae 6:166–174

    Article  Google Scholar 

  44. Micheli L, Radoi A, Guarrina R, Massaud R, Bala C, Moscone D, Palleschi G (2004) Disposable immunosensor for the determination of domoic acid in shellfish. Biosens Bioelectron 20:190–196

    Article  Google Scholar 

  45. Traynor IM, Plumpton L, Fodey TL, Higgins C, Elliott CT (2006) Immunobiosensor detection of domoic acid as a screening test in bivalve molluscs: comparison with liquid chromatography-based analysis. J AOAC Int 89:868–872

    Google Scholar 

  46. Neagu D, Micheli L, Palleschi G (2006) Study of a toxin–alkaline phosphatase conjugate for the development of an immunosensor for tetrodotoxin determination. Anal Bioanal Chem 385:1068–1074

    Article  Google Scholar 

  47. Dominguez B, Hayat A, Sassolas A, Alonso GA, Munoz R, Marty J-L (2012) Automated flow-through amperometric immunosensor for highly sensitive and on-line detection of okadaic acid in mussel sample. Talanta 99:232–237

    Article  Google Scholar 

  48. Sassolas A, Catanante G, Hayat A, Marty J-L (2011) Development of an efficient protein phosphatase-based colorimetric test for okadaic acid detection. Anal Chim Acta 702:262–268

    Article  Google Scholar 

  49. Campas M, Marty JL (2007) Enzyme sensor for the electrochemical detection of the marine toxin okadaic acid. Anal Chim Act 605:87–93

    Article  Google Scholar 

  50. Volpe G, Cotroneo E, Moscone D, Croci L, Cozzi L, Ciccaglioni G, Palleschi G (2009) A bienzyme electrochemical probe for flow injection analysis of okadaic acid based on protein phosphatase-2A inhibition: an optimization study. Anal Biochem 385:50–56

    Article  Google Scholar 

  51. Du D, Wang J, Smith JN, Timchalk C, Lin Y (2009) Biomonitoring of organophosphorus agent exposure by reactivation of cholinesterase enzyme based on carbon nanotube-enhanced flow-injection amperometric detection. Anal Chem 81:9314–9320]

    Google Scholar 

  52. Crew A, Lonsdale D, Byrd N, Pittson R, Hart JP (2011) A screen-printed, amperometric biosensor array incorporated into a novel automated system for the simultaneous determination of organophosphate pesticides. Biosens Bioelectron 26:2847–2851

    Article  Google Scholar 

  53. Arduini F, Neagu D, Dall’Oglio S, Moscone D, Palleschi G (2012) Towards a portable prototype based on electrochemical cholinesterase biosensor to be assembled to soldier overall for nerve agent detection. Electroanalysis 24:581–590

    Google Scholar 

  54. Seto Y, Iura K, Itoi T, Tsuge K, Kataoka M (2004) Detection performance of chemical agent detector M90. Jpn J Sci Technol Ident 9:39–47 (in Japanese)

    Google Scholar 

  55. Matsushita K, Sekiguchi H, Seto Y (2005) Performance of portable surface acoustic wave sensor array detector for chemical agents. Bunseki Kagaku 54:83–88 (in Japanese)

    Article  Google Scholar 

  56. http://www.kdanalytical.com. Accessed 31 Oct 2015

  57. Sekiguchi H, Matsushita K, Yamashiro S, Sano Y, Okuda T, Sato A (2006) On site determination of nerve and mustard agents using a field-portable gas chromatograph-mass spectrometers. Forensic Toxicol 24:17–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana Arduini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arduini, F., Scognamiglio, V., Moscone, D., Palleschi, G. (2016). Electrochemical Biosensors for Chemical Warfare Agents. In: Nikolelis, D., Nikoleli, GP. (eds) Biosensors for Security and Bioterrorism Applications. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-28926-7_6

Download citation

Publish with us

Policies and ethics