Skip to main content

Aptasensor Technologies Developed for Detection of Toxins

  • Chapter
  • First Online:
Biosensors for Security and Bioterrorism Applications

Abstract

Aptamers are defined as new generation of nucleic acids which has recently presented the promising spesifications over to antibodies. They can be produced in vitro by Systematic Evolution of Ligands by EXponential Enrichment (SELEX), and have the ability to recognize selectively and sensitively their targets; protein, toxin, drug or cell targets. Thus, they have a wide range of applications in different areas, such as, drug delivery, imaging and biosensing. Accordingly, an increasing number of studies related to aptamer based sensors “aptasensors” have been introduced in the literature. The recent studies on development of aptasensor technologies, which were applied for toxin detection, have been overviewed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Federation of American scientists special weapons primer (2015) http://www.fas.org/nuke/intro/bw/agent.htm. Accessed 22 Oct 2015

  2. Sweeney MJ, White S, Dobson ADW (2000) Mycotoxins in agriculture and food safety. Irish J Agric Food Res 29:235–244

    Google Scholar 

  3. Richard JL, Fleetwood K (Dec 2001–Jan 2002) Current Trends in Mycotoxin Analysis Food Safety Magazine pp 18–21

    Google Scholar 

  4. Balaban N, Rasooly A (2000) Staphylococcal enterotoxins. Int J Food Microbiol 61:1–10

    Article  Google Scholar 

  5. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  ADS  Google Scholar 

  6. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  ADS  Google Scholar 

  7. Shim WB, Mun H, Joung HA et al (2014) Chemiluminescence competitive aptamer assay for the detection of aflatoxin B1 in corn samples. Food Control 36:30–35

    Article  Google Scholar 

  8. Liu J, Yu J, Chen J et al (2014) Signal-amplification and real-time fluorescence anisotropy detection of apyrase by carbon nanoparticle. Mater Sci Eng C 38:206–211

    Article  Google Scholar 

  9. Zhou N, Wang J, Zhang J et al (2013) Selection and identification of streptomycin-specific single-stranded DNA aptamers and the application in the detection of streptomycin in honey. Talanta 108:109–116

    Article  Google Scholar 

  10. Wang J (2007) Nanoparticle-based electrochemical bioassays of proteins. Electroanalysis 19:769–776

    Article  Google Scholar 

  11. Xiang Y, Zhang Y, Qian X et al (2010) Ultrasensitive aptamer-based protein detection via a dual amplified biocatalytic strategy. Biosens Bioelectron 25:2539–2542

    Article  Google Scholar 

  12. Hianik T, Wang J (2009) Electrochemical aptasensors—recent achievements and perspectives. Electroanalysis 21:1223–1235

    Article  Google Scholar 

  13. Numnuam A, Chumbimuni-Torres KY, Xiang Y et al (2008) Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Anal Chem 80:707–712

    Article  Google Scholar 

  14. Xiang Y, Xie M, Bash R et al (2007) Ultrasensitive label-free aptamer-based electronic detection. Angew Chem Int Edit 46:9054–9056

    Article  Google Scholar 

  15. Palchetti I, Mascini M (2012) Electrochemical nanomaterial-based nucleic acid aptasensors. Anal Bianal Chem 402:3103–3114

    Article  Google Scholar 

  16. Mascini M, Ilaria P, Sara T (2011) Aptamers smart molecules for biosensing clinical samples. Chim Oggi 29:16–18

    Google Scholar 

  17. Polonschii C, David S, Tombelli S et al (2010) A novel low-cost and easy to develop functionalization platform. Case study: aptamer-based detection of thrombin by surface plasmon resonance. Talanta 80:2157–2164

    Article  Google Scholar 

  18. Centi S, Sanmartin LB, Tombelli S et al (2009) Detection of C reactive protein (CRP) in serum by an electrochemical aptamer-based sandwich assay. Electroanalysis 21:1309–1315

    Article  Google Scholar 

  19. Tombelli S, Mascini M (2009) Aptamers as molecular tools for bioanalytical methods. Curr Opin Mol Ther 11:179–188

    Google Scholar 

  20. Centi S, Messina G, Tombelli S et al (2008) Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads. Biosens Bioelectron 23:1602–1609

    Article  Google Scholar 

  21. Bini A, Minunni M, Tombelli S et al (2007) Analytical performances of aptamer-based sensing for thrombin detection. Anal Chem 79:3016–3019

    Article  Google Scholar 

  22. Centi S, Tombelli S, Minunni M et al (2007) Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal Chem 79:1466–1473

    Article  Google Scholar 

  23. Tombelli S, Minunni M, Mascini M (2005) Analytical applications of aptamers. Biosens Bioelectron 20:2424–2434

    Article  Google Scholar 

  24. Miodek A, Castillo G, Hianik T et al (2013) Electrochemical aptasensor of human cellular prion based on multiwalled carbon nanotubes modified with dendrimers: a platform for connecting redox markers and aptamers. Anal Chem 85:7704–7712

    Article  Google Scholar 

  25. Evtugyn G, Porfireva A, Sitdikov R et al (2013) Electrochemical aptasensor for the determination of ochratoxin A at the Au electrode modified with Ag nanoparticles decorated with macrocyclic ligand. Electroanalysis 25:1847–1854

    Article  Google Scholar 

  26. Castillo G, Trnkova L, Hrdy R et al (2012) Impedimetric Aptasensor for thrombin recognition based on CD support. Electroanalysis 24:1079–1087

    Article  Google Scholar 

  27. Evtugyn G, Kostyleva V, Sitdikov R et al (2012) Electrochemical aptasensor based on a macrocyclic ligand bearing neutral red. Electroanalysis 24:91–100

    Article  Google Scholar 

  28. Porfireva SV, Evtugyn GA, Ivanov AN et al (2010) Impedimetric aptasensors based on carbon nanotubes—poly(methylene blue) composite. Electroanalysis 22:2187–2195

    Article  Google Scholar 

  29. Erdem A, Karadeniz H, Mayer G et al (2009) Electrochemical sensing of aptamer-protein interactions using a magnetic particle assay and single-use sensor technology. Electroanalysis 21:1278–1284

    Article  Google Scholar 

  30. Rohrbach F, Karadeniz H, Erdem A et al (2012) Label-free impedimetric aptasensor for lysozyme detection based on carbon nanotube-modified screen-printed electrodes. Anal Biochem 421:454–459

    Article  Google Scholar 

  31. Erdem A, Congur G (2014) Voltammetric aptasensor combined with magnetic beads assay developed for detection of human activated protein C. Talanta 128:428–433

    Article  Google Scholar 

  32. Erdem A, Congur G (2014a) Dendrimer enriched single-use aptasensor for impedimetric detection of activated protein C. Coll Surf B 117:338–345

    Article  Google Scholar 

  33. Erdem A, Congur G (2014b) Dendrimer modified 8-channel screen-printed electrochemical array system for impedimetric detection of activated protein C. Sens Actuat B-Chem 196:168–174

    Article  Google Scholar 

  34. Zhou N, Zhang J, Tian Y (2014) Aptamer-based spectrophotometric detection of kanamycin in milk. Anal Method 6:1569–1574

    Article  Google Scholar 

  35. Rhouati A, Hayat A, Hernandez DB et al (2013) Development of an automated flow-based electrochemical aptasensor for on-line detection of Ochratoxin A. Sensor Actuat B-Chem 176:1160–1166

    Article  Google Scholar 

  36. Kim YS, Chung J, Song MY et al (2014) Aptamer cocktails: Enhancement of sensing signals compared to single use ofaptamers for detection of bacteria. Biosens Bioelectron 54:195–198

    Article  Google Scholar 

  37. Ma X, Jiang Y, Ji F et al (2014) An aptamer-based electrochemical biosensor for the detection of salmonella. J Microbiol Meth 98:94–98

    Article  Google Scholar 

  38. Dong Y, Xu Y, Yong W et al (2014) Aptamer and its potential applications for food safety. Crit Rev Food Sci 54:1548–1561

    Article  Google Scholar 

  39. Xing H, Hwang K, Li J et al (2014) DNA aptamer technology for personalized medicine. Curr Opin Chem Eng 4:79–87

    Article  Google Scholar 

  40. Alsager OA, Kumar S, Willmott GR et al (2014) Small molecule detection in solution via the size contraction response of aptamer functionalized nanoparticles. Biosens Bioelectron 57:262–268

    Article  Google Scholar 

  41. Shi H, Zhao G, Liu M et al (2013) Aptamer-based colorimetric sensing of acetamiprid in soil samples: sensitivity, selectivity and mechanism. J Hazard Mater 260:754–761

    Article  Google Scholar 

  42. Elshafey R, Siaj M, Zouro M (2015) DNA aptamers selection and characterization for development of label free impedimetric aptasensor for neurotoxin anatoxin-a. Biosens Bioelectron 68:295–302

    Article  Google Scholar 

  43. Fetter L, Richards J, Daniel J et al (2015) Electrochemical aptamers caffold biosensors for detection of botulism and ricintoxins. Chem Commun 51:15137–15140

    Article  Google Scholar 

  44. Wei F, Bai B, Ho C-M (2011) Rapid lyoptimizing an aptamer based BoNTsensor by feedback system control (FSC) scheme. Biosens Bioelectron 30:174–179

    Article  Google Scholar 

  45. Halliwell J, Savage AC, Buckley N et al (2014) Electrochemical impedance spectroscopy biosensor for detection of active botulinum neurotoxin. Sens Bio-Sens Res 2:12–15

    Article  Google Scholar 

  46. Castillo G, Spinella K, Poturnayova A et al (2015) Detection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform. Food Control 52:9–18

    Article  Google Scholar 

  47. Evtugyn G, Porfireva A, Stepanova V et al (2014) Electrochemical aptasensor based on polycarboxylic macrocycle modified with neutral red for aflatoxin B1 detection. Electroanalysis 26:2100–2109

    Article  Google Scholar 

  48. Istamboulié G, Paniel N, Zara L, Granados LR, Barthelmebs L, Noguer T (2016) Development of an impedimetric aptasensor for the determination of AflatoxinM1 in milk. Talanta 146:464–469

    Article  Google Scholar 

  49. Nguyen B, DaiTran L, Do QP, Nguyen HL, Tran NH, Nguyen PX (2013) Label-free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor. Mater Sci Eng C 33:2229–2234

    Article  Google Scholar 

  50. Jiang H-L, Liu X-Y, Qiu Y, Yao D-S, Xie C-F, Liu D-L (2015) Development of an aptasensor for the fastdetection of versicolorin A. Food Control 56:202–210

    Article  Google Scholar 

  51. Eitzen E (2001) Medical Management of Biological Casualties Handbook, 4th edn. U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD. ter Sci Eng C 33:2229–2234.

    Google Scholar 

  52. Haes AJ, Giordano BC, Collins GE (2006) Aptamer-based detection and quantitative analysis of ricin using affinity probe capillary electrophoresis. Anal Chem 78:3758–3764

    Article  Google Scholar 

  53. Wang B, Guo C, Zhang M et al (2012) High-resolution single-molecule recognition imaging of the molecular details of ricin—aptamer interaction. J Phys Chem B 116:5316–5322

    Article  Google Scholar 

  54. Zhu Z, Feng M, Zuo L et al (2015) An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil. Biosens Bioelectron 65:320–326

    Article  Google Scholar 

  55. Kim SE, Su W, Cho M et al (2012) Harnessing aptamers for electrochemical detection of endotoxin. Anal Biochem 424:12–20

    Article  Google Scholar 

  56. Sheng LF, Ren JT, Miao YQ et al (2011) PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Biosens Bioelectron 26:3494–3499

    Article  Google Scholar 

  57. Wu SJ, Duan N, Ma XY et al (2012) Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal Chem 84:6263–6270

    Article  Google Scholar 

  58. Tang J, Yu T, Guo L et al (2007) In vitro selection of DNA aptamer against abrin toxin and aptamer-based abrin direct detection. Biosens Bioelectron 22:2456–2463

    Article  Google Scholar 

  59. Bruno JG, Richarte AM, Carrillo MA, Edge A (2012) An aptamer beacon responsive to botulinum toxins. Biosens Bioelectron 31:240–243

    Article  Google Scholar 

  60. He L, Lamont E, Veeregowda B et al (2011) Aptamer-based surface-enhanced Raman scattering detection of ricin in liquid foods. Chem Sci 2:1579–1582

    Article  Google Scholar 

  61. Lamont E, He L, Warriner K et al (2011) A single DNA aptamer functions as a biosensor for ricin. Analyst 136:3884–3895

    Article  ADS  Google Scholar 

  62. Zengin A, Tamer U, Caykara T (2015) Fabrication of a SERS based aptasensor for detection of ricin B toxin. J Mater Chem B 3:306–315

    Article  Google Scholar 

  63. Zhang Z, Yu L, Xu L et al (2014) Biotoxin sensing in food and environment via microchip. Electrophoresis 35:1547–1559

    Google Scholar 

  64. Chan C, Guo J, Sun C et al (2015) A reduced graphene oxide-Au based electrochemical biosensor for ultrasensitive detection of enzymatic activity of botulinum neurotoxin A, Sens Act B 220:131–137

    Google Scholar 

  65. Kuang H, Chen W, Xu D et al (2010) Fabricated aptamer-based electrochemical “signal-off” sensor of ochratoxin A. Biosens Bioelectron 26:710–716

    Article  Google Scholar 

  66. Zhang J, Chen J, Zhang X et al (2012) An electrochemical biosensor based on hairpin-DNA aptamer probe and restriction endonuclease for ochratoxin A detection. Electrochem Commun 25:5–7

    Article  Google Scholar 

  67. Yang X, Qian J, Jiang L et al (2014) Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy. Bioelectrochemistry 96:7–13

    Article  Google Scholar 

  68. Luo P, Liu Y, Xia Y et al (2014) Aptamer biosensor for sensitive detection of toxin A of Clostridium difficile using gold nanoparticles synthesized by Bacillus stearothermophilus. Biosens Bioelectron 54:217–221

    Article  Google Scholar 

  69. Eissa S, Siaj M, Zourob M (2015) Aptamer based competitive electrochemical biosensor for brevetoxin-2, Biosens Bioelectron 69:148–154

    Google Scholar 

  70. Chen X, Huang Y, Ma X et al (2015) Impedimetric aptamer-based determination of the moldtoxin fumonisin B1. Microchim Acta 182:1709–1714

    Article  Google Scholar 

  71. Cruz-Aguado JA, Penner G (2008) Fluorescencepolarization based displacementassay for the determination of smallmolecules with aptamers. Anal Chem 80:8853–8855

    Article  Google Scholar 

  72. Barna-Vetro I, Solti L, Teren J et al (1996) Sensitive ELISA test for determination of ochratoxin A. J Agric Food Chem 44:4071–4074

    Article  Google Scholar 

  73. O’Brien E, Dietrich DR (2005) Ochratoxin A: the continuing enigma. Cr Rev Toxicol 35:33–60

    Article  Google Scholar 

  74. Visconti A, Bruno Doko M, Solfrizzo M et al (1996) European inter comparison study for the determination of fumonisins in maize. Microchim Acta 123:55–61

    Article  Google Scholar 

  75. Nelson PE, Desjardins AE, Plattner RD (1993) Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry and significance. Annu Rev Phytopathol 31:233–252

    Article  Google Scholar 

  76. Ross PF, Nelson PE, Richard JL et al (1990) Production of fumonisins by Fusarium moniliforme and Fusarium proliferatum isolates associated with Impedimetric aptamer-based determination of FB-1 1713 equine leukoencephalomalacia and a pulmonary edema syndrome in swine. Appl Eniron Microbiol 56:3225–3226

    Google Scholar 

  77. Yoshizawa T, Yamashita A, Luo Y (1994) Fumonisin occurrence in corn from high- and low-risk areas for human esophageal cancer in China. Appl Environ Microbiol 60:1626–1629

    Google Scholar 

  78. Chhabra R, Sharma J, Wang H et al (2009) Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers. Nanotechnology 20(48):485201–485211

    Article  ADS  Google Scholar 

  79. Habenicht BF, Prezhdo OV (2008) Nonradiative quenching of fluorescence in a semiconducting carbon nanotube: a time-domain ab initio study. Phys Rev Lett (100):197402.

    Article  ADS  Google Scholar 

  80. Huang Y, Zhao S, Liang H et al (2011) Multiplex detection of endonucleases by using a multicolor gold nanobeacon. Chemistry 17:7313–7319

    Article  Google Scholar 

  81. Liu M, Zhao H, Chen S et al (2011) A “turn-on” fluorescent copper biosensor based on DNA cleavage-dependent graphene-quenched DNAzyme. Biosens Bioelectron 26:4111–4116

    Article  Google Scholar 

  82. Luo Y, Liao F, Lu W et al (2011) Coordination polymer nanobelts for nucleic acid detection. Nanotechnology 22:195502–195508

    Article  ADS  Google Scholar 

  83. Olek M, Büsqen T, Hilgendorff M, Giersiq M (2006) Quantum dot modified multiwall carbon nanotubes. J Phys Chem B 110:12901–12904

    Article  Google Scholar 

  84. Chang H, Tang L, Wang Y et al (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82:2341–2346

    Article  Google Scholar 

  85. Zhao W, Chiuman W, Brook MA, Li Y (2007) Simple and rapid colorimetric biosensors based on DNA aptamer and non cross linking gold nanoparticle aggregation. Chem Bio Chem 8:727–731

    Article  Google Scholar 

  86. Chang TW, Blank M, Janardhanan P et al (2010) In vitro selection of RNA aptamers that inhibit the activity of type A botulinum neurotoxin. Biochem Biophys Res Commun 396:854–860

    Article  Google Scholar 

  87. Zhao R, Wen Y, Yang J et al (2014) Aptasensor for staphylococcus enterotoxin B detection using high SNR piezoresistive microcantilevers. JMEMS 23:1054–1062

    Google Scholar 

  88. Hall B, Micheletti JM, Satya P, Ogle K, Pollard J, Ellington AD (2009) Design, synthesis, and amplification of DNA pools for in vitro selection. In: Current Protocols in Nucleic Acid Chemistry, chapter 9, unit 9.2. iochem Biophys Res Commun 396:854-860

    Google Scholar 

  89. Patel DJ, Suri AK, Jiang F et al (1997) Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol 272:645–664

    Article  Google Scholar 

  90. Bini A, Mascini M, Mascini M et al (2011) Selection of thrombin-binding aptamers by using computational approach for aptasensor application. Biosens Bioelectron 26:4411–4416

    Article  Google Scholar 

  91. Erdem A, Eksin E, Muti M (2014) Chitosan–graphene oxide based aptasensor for the impedimetric detection of lysozyme. Coll Surf B 115:205–211

    Article  Google Scholar 

  92. Zhang Z, Yang W, Wang J et al (2009) A sensitive impedimetric thrombin aptasensor based on polyamidoamine dendrimer. Talanta 78:1240–1245

    Article  Google Scholar 

  93. Fernandez EG, Santos-lvarez N, Lobo-Casta MJ et al (2011) Aptamer-based inhibition assay for the electrochemical detection of tobramycin using magnetic microparticles. Electroanalysis 23:43–49

    Article  Google Scholar 

  94. Yang F, Wang P, Wang R et al (2016) Label free electrochemical aptasensor for ultrasensitive detection of ractopamine. Biosens Bioelectron 77:347–352

    Article  Google Scholar 

  95. Emrani AS, Danesh NM, Lavaee P et al (2016) Colorimetric and fluorescence quenching apta sensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chem 190:115–121

    Article  Google Scholar 

  96. Bazin I, Nabais E et al (2010) Rapid visual tests: Fast and reliable detection of ochratoxin A. Toxins 2:2230–2241

    Article  Google Scholar 

  97. Cella LN, Sanchez P, Zhong W et al (2010) Nanoaptasensor for protective antigen toxin of anthrax. Anal Chem 82:2042–2047

    Article  Google Scholar 

Download references

Acknowledgments

A.E. would like to express her gratitude to the Turkish Academy of Sciences (TUBA) as an Associate member for its partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arzum Erdem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eksin, E., Congur, G., Erdem, A. (2016). Aptasensor Technologies Developed for Detection of Toxins. In: Nikolelis, D., Nikoleli, GP. (eds) Biosensors for Security and Bioterrorism Applications. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-28926-7_12

Download citation

Publish with us

Policies and ethics