Skip to main content

Polyglycerol-Functionalized Nanoparticles for Biomedical Imaging

  • Chapter
  • First Online:
Carbon Nanoparticles and Nanostructures

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Polyglycerol (PG) functionalization on the surface of nanoparticle is one of the most effective methods to well disperse the particle in a physiological environment. The functionality also provides the nanoparticle with scaffold for further derivatization to add more functions. In this chapter, we will describe PG functionalization of nanoparticles including detonation nanodiamond (dND), superparamagnetic iron oxide nanoparticle (SPION) and fluorescence nanodiamond (fND), and their further derivatization for biomedical imaging agents in magnetic resonance and fluorescence imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Wagner, A. Dullaart, A.-K. Bock, A. Zweck, The emerging nanomedicine landscape. Nat. Biotechnol. 24, 1211–1217 (2006). doi:10.1038/nbt1006-1211

    Article  Google Scholar 

  2. K. Riehemann, S.W. Schneider, T.A. Luger, B. Godin, M. Ferrari, H. Fuchs, Nanomedicine—challenge and perspectives. Angew. Chem. Int. Ed. 48, 872–897 (2009). doi:10.1002/anie.200802585

    Article  Google Scholar 

  3. L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114, 10869–10939 (2014). doi:10.1021/cr400532z

    Article  Google Scholar 

  4. Y. Liu, H. Miyoshi, M. Nakamura, Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 120, 2527–2537 (2007). doi:10.1002/ijc.22709

    Article  Google Scholar 

  5. O.C. Farokhzad, R. Langer, Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Delivery Rev. 58, 1456–1459 (2006). doi:10.1016/j.addr.2006.09.011

    Article  Google Scholar 

  6. T. Sun, Y.S. Zhang, B. Pang, D.C. Hyun, M. Yang, Y. Xia, Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. 53, 12320–12364 (2014). doi:10.1002/anie.201403036

    Google Scholar 

  7. E.-K. Lim, T. Kim, S. Paik, S. Haam, Y.-M. Huh, K. Lee, Nanomaterials for theranostics: recent advances and future challenges. Chem. Rev. 115, 327–394 (2015). doi:10.1021/cr300213b

    Article  Google Scholar 

  8. L. Zhao, Y.-H. Xu, T. Akasaka, S. Abe, N. Komatsu, F. Watari, X. Chen, Nanodiamond with stealth polyglycerol coating: a macrophage-evading platform for selective drug delivery in cancer cells. Biomaterials 35, 5393–5406 (2014). doi:10.1016/j.biomaterials.2014.03.041

    Article  Google Scholar 

  9. L. Zhao, Y.-H. Xu, H. Qin, S. Abe, T. Akasaka, T. Chano, F. Watari, T. Kimura, N. Komatsu, X. Chen, Platinum on nanodiamond: a promising prodrug conjugated with stealth polyglycerol, targeting peptide and acid-responsive antitumor drug. Adv. Funct. Mater. 24, 5348–5357 (2014). doi:10.1002/adfm.201304298

    Article  Google Scholar 

  10. L. Zhao, T. Takimoto, M. Ito, N. Kitagawa, T. Kimura, N. Komatsu, Chromatographic separation of highly soluble diamond nanoparticles prepared by polyglycerol grafting. Angew. Chem. Int. Ed. 50, 1388–1392 (2011). doi:10.1002/anie.201006310

    Article  Google Scholar 

  11. L. Zhao, Y. Nakae, H. Qin, T. Ito, T. Kimura, H. Kojima, L. Chan, N. Komatsu, Polyglycerol-functionalized nanodiamond as a platform for gene delivery: derivatization, characterization, and hybridization with DNA. Beilstein J. Org. Chem. 10, 707–713 (2014). doi:10.3762/bjoc.10.64

    Article  Google Scholar 

  12. L. Zhao, A. Shiino, H. Qin, T. Kimura, N. Komatsu, Synthesis, characterization, and magnetic resonance evaluation of polyglycerol-functionalized detonation nanodiamond conjugated with gadolinium(III) complex. J. Nanosci. Nanotechnol. 15, 1076–1082 (2015). doi:10.1166/jnn.2015.9738

    Article  Google Scholar 

  13. L. Zhao, T. Chano, S. Morikawa, Y. Saito, A. Shiino, S. Shimizu, T. Maeda, T. Irie, S. Aonuma, H. Okabe, T. Kimura, T. Inubushi, N. Komatsu, Hyperbranched polyglycerol-grafted superparamagnetic iron oxide nanoparticles: synthesis, characterization, functionalization, size separation, magnetic properties, and biological applications. Adv. Funct. Mater. 22, 5107–5117 (2012). doi:10.1002/adfm.201201060

    Article  Google Scholar 

  14. L. Zhao, T. Takimoto, T. Kimura, N. Komatsu, Polyglycerol functionalization of ZnO nanoparticles for stable hydrosol in physiological media. J. Indian Chem. Soc. 88, 1787–1790 (2011)

    Google Scholar 

  15. T. Takimoto, T. Chano, S. Shimizu, H. Okabe, M. Ito, M. Morita, T. Kimura, T. Inubushi, N. Komatsu, Preparation of fluorescent diamond nanoparticles stably dispersed under physiological environment through multi-step organic transformations. Chem. Mater. 22, 3462–3471 (2010). doi:10.1021/cm100566v

    Article  Google Scholar 

  16. P. Caravan, J.J. Ellison, T.J. McMurry, R.B. Lauffer, Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99, 2293–2352 (1999). doi:10.1021/cr980440x

    Article  Google Scholar 

  17. Z. Zhou, Z.-R. Lu, Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 1–18 (2013). doi:10.1002/wnan.1198

    Article  Google Scholar 

  18. P. Caravan, Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 35, 512–523 (2006). doi:10.1039/B510982P

    Article  Google Scholar 

  19. E. Wiener, M.W. Brechbiel, H. Brothers, R.L. Magin, O.A. Gansow, D.A. Tomalia, P.C. Lauterbur, Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn. Reson. Med. 31, 1–8 (1994). doi:10.1002/mrm.1910310102

    Article  Google Scholar 

  20. R.C. Brasch, Rationale and applications for macromolecular Gd-based contrast agents. Magn. Reson. Med. 22, 282–287 (1991). doi:10.1002/mrm.1910220225

    Article  Google Scholar 

  21. F.M. Cavagna, F. Maggioni, P.M. Castelli, M. Dapra, L.G. Imepratori, V. Lorusso, B.G. Jenkins, Gadolinium chelates with weak binding to serum proteins: a new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging. Invest. Radiol. 32, 780–796 (1997)

    Article  Google Scholar 

  22. P.J. Endres, T. Paunesku, S. Vogt, T.J. Meade, G.E. Woloschak, DNA-TiO2 nanoconjugates labeled with magnetic resonance contrast agents. J. Am. Chem. Soc. 129, 15760–15761 (2007). doi:10.1021/ja0772389

    Article  Google Scholar 

  23. L.M. Manus, D.J. Mastarone, E.A. Waters, X.-Q. Zhang, E.A. Schultz-Sikma, K.W. MacRenaris, D. Ho, T.J. Meade, Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett. 10, 484–489 (2009). doi:10.1021/nl903264h

    Article  Google Scholar 

  24. T. Nakamura, T. Ohana, H. Yabuno, R. Kasai, T. Suzuki, T. Hasebe, Simple fabrication of Gd(III)-DTPA-nanodiamond particles by chemical modification for use as magnetic resonance imaging (MRI) contrast agent. Appl. Phys. Express 6, 015001 (2013). doi:10.7567/APEX.6.015001

    Article  Google Scholar 

  25. M. Calderón, M.A. Quadir, S.K. Sharma, R. Haag, Dendritic polyglycerols for biomedical applications. Adv. Mater. 22, 190–218 (2010). doi:10.1002/adma.200902144

    Article  Google Scholar 

  26. P. Caravan, C.T. Farrar, L. Frullano, R. Uppal, Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T 1 contrast agents. Contrast Media Mol. Imaging 4, 89–100 (2009). doi:10.1002/cmmi.267

    Article  Google Scholar 

  27. P.L. de Sousa, J.B. Livramento, L. Helm, A.E. Merbach, W. Même, B.-T. Doan, J.-C. Beloeil, M.I.M. Prata, A.C. Santos, C.F.G.C. Geraldes, É. Tóth, In vivo MRI assessment of a novel GdIII-based contrast agent designed for high magnetic field applications. Contrast Media Mol. Imaging 3, 78–85 (2008). doi:10.1002/cmmi.233

    Article  Google Scholar 

  28. E. Amstad, M. Textor, E. Reimhult, Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale 3, 2819–2843 (2011). doi:10.1039/C1NR10173K

    Article  Google Scholar 

  29. J. Xie, G. Liu, H.S. Eden, H. Ai, X. Chen, Surface-engineered magnetic nanoparticle platform for cancer imaging and therapy. Acc. Chem. Res. 44, 883–892 (2011). doi:10.1021/ar200044b

    Article  Google Scholar 

  30. R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 22, 2729–2742 (2010). doi:10.1002/adma.201000260

    Article  Google Scholar 

  31. A.H. Latham, M.E. Williems, Controlling transport and chemical functionality of magnetic nanopartiles. Acc. Chem. Res. 41, 411–420 (2008). doi:10.1021/ar700183b

    Article  Google Scholar 

  32. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008). doi:10.1021/cr068445e

    Article  Google Scholar 

  33. Y. Jun, J.-H. Lee, J. Cheon, Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem. Int. Ed. 47, 5122–5135 (2008). doi:10.1002/anie.200701674

    Article  Google Scholar 

  34. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005). doi:10.1016/j.biomaterials.2004.10.012

    Article  Google Scholar 

  35. K. Chen, J. Xie, H. Xu, D. Behera, M.H. Michalski, S. Biswal, A. Wang, X. Chen, Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting. Biomaterials 30, 6912–6919 (2009). doi:10.1016/j.biomaterials.2009.08.045

    Article  Google Scholar 

  36. F.M. Kievit, Z.R. Stephen, O. Veiseh, H. Arami, T. Wang, V.P. Lai, J.O. Park, R.G. Ellenbogen, M.L. Disis, M. Zhang, Targeting of primary breast cancers and metastases in a transgenic mouse model using rationally designed multifunctional spions. ACS Nano 6, 2591–2601 (2012). doi:10.1021/nn205070h

    Article  Google Scholar 

  37. W. Cai, J. Wan, Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J. Colloid Interface Sci. 305, 366–370 (2007). doi:10.1016/j.jcis.2006.10.023

    Article  Google Scholar 

  38. J. Wan, W. Cai, X. Meng, E. Liu, Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem. Commun. 47, 5004–5006 (2007). doi:10.1039/B712795B

    Article  Google Scholar 

  39. N. Miguel-Sancho, O. Bomati-Miguel, G. Colom, J.-P. Salvador, M.-P. Marco, J. Santamaria, Development of stable, water-dispersible, and biofunctionalizable superparamagnetic iron oxide nanoparticles. Chem. Mater. 23, 2795–2802 (2011). doi:10.1021/cm1036452

    Article  Google Scholar 

  40. L. Wang, K.G. Neoh, E.T. Kang, B. Shuter, S.-C. Wang, Superparamagnetic hyperbranched polyglycerol-grafted Fe3O4 nanoparticles as a novel magnetic resonance imaging contrast agent: an in vitro assessment. Adv. Funct. Mater. 19, 2615–2622 (2009). doi:10.1002/adfm.200801689

    Article  Google Scholar 

  41. U.I. Tromsdorf, O.T. Bruns, S.C. Salmen, U. Beisiegel, H. Weller, A highly effective, nontoxic T 1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett. 9, 4434–4440 (2009). doi:10.1021/nl902715v

    Article  Google Scholar 

  42. H. Wei, N. Insin, J.Y. Lee, H.-S. Han, J.M. Cordero, W. Liu, M.G. Bawendi, Compact zwitterion-coated iron oxide nanoparticles for biological applications. Nano Lett. 12, 22–25 (2012). doi:10.1021/nl202721q

    Article  Google Scholar 

  43. S. Tong, S. Hou, Z. Zheng, J. Zhou, G. Bao, Coating optimization of superparamagnetic iron oxide nanoparticles for high T 2 relaxivity. Nano Lett. 10, 4607–4613 (2010). doi:10.1021/nl102623x

    Article  Google Scholar 

  44. H. Duan, M. Kuang, X. Wang, Y.A. Wang, H. Mao, S. Nie, Reexamining the effects of particle size and surface chemistry on the magnetic properties of iron oxide nanocrystals: new insight into spin disorder and proton relaxivity. J. Phys. Chem. C 112, 8127–8131 (2008). doi:10.1021/jp8029083

    Article  Google Scholar 

  45. Y. Jun, Y.-M. Huh, J. Choi, J.-H. Lee, H.-T. Song, S. Kim, S. Yoon, K.-S. Kim, J.-S. Shin, J.-S. Suh, J. Cheon, Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127, 5732–5733 (2005). doi:10.1021/ja0422155

    Article  Google Scholar 

  46. L. Zhao, N. Komatsu, in Magnetic Nanoparticles Synthesis, Physicochemical Properties and Role in Biomedicine, ed. by N.P. Sabbas (Nove publisher, New York, 2014), pp. 95–111

    Google Scholar 

  47. L.E.W. LaConte, N. Nitin, O. Zurkiya, D. Caruntu, C.J. O’Connor, X. Hu, G. Bao, Coating thickness of magnetic iron oxide nanoparticles affects r2 relaxivity. J. Magn. Reson. Imaging 26, 1634–1641 (2007). doi:10.1002/jmri.21194

    Article  Google Scholar 

  48. J. Huang, L. Bu, J. Xie, K. Chen, Z. Cheng, X. Li, X. Chen, Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4, 7151–7160 (2010). doi:10.1021/nn101643u

    Article  Google Scholar 

  49. H.B. Na, G. Palui, J.T. Rosenberg, X. Ji, S.C. Grant, H. Mattoussi, Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles. ACS Nano 6, 389–399 (2012). doi:10.1021/nn203735b

    Article  Google Scholar 

  50. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012). doi:10.1038/nnano.2011.209

    Article  Google Scholar 

  51. Y. Xing, L. Dai, Nanodiamond for nanomedicine. Nanomedicine 4, 207–218 (2009). doi:10.2217/17435889.4.2.207

    Article  Google Scholar 

  52. Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, W. Fann, Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 3, 284–288 (2008). doi:10.1038/nnano.2008.99

    Article  Google Scholar 

  53. R.J. Narayan, R.D. Boehm, A.V. Sumant, Medical applications of diamond particles & surfaces. Mater. Today 14, 154–163 (2011). doi:10.1016/S1369-7021(11)70087-6

    Article  Google Scholar 

  54. C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, W. Fann, Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Nat. Acad. Sci. 104, 727–732 (2007). doi:10.1073/pnas.0605409104

    Article  Google Scholar 

  55. O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour, H. Girard, C. Gesset, J.-C. Arnault, A. Thorel, J.P. Boudou, P.A. Curmi, F. Treussart, Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 3, 3955–3962 (2009). doi:10.1021/nn901014j

    Article  Google Scholar 

  56. N. Mohan, Y.-K. Tzeng, L. Yang, Y.-Y. Chen, Y.Y. Hui, C.-Y. Fang, H.-C. Chang, Sub-20-nm fluorescent nanodiamonds as photostable biolabels and fluorescence resonance energy transfer donors. Adv. Mater. 22, 843–847 (2010). doi:10.1002/adma.200901596

    Article  Google Scholar 

  57. J.-P. Boudou, M.-O. David, V. Joshi, H. Eidi, P.A. Curmi, Hyperbranched polyglycerol modified fluorescent nanodiamond for biomedical research. Diamond Relat. Mater. 38, 131–138 (2013). doi:10.1016/j.diamond.2013.06.019

    Article  Google Scholar 

  58. Y.-K. Tzeng, O. Faklaris, B.-M. Chang, Y. Kuo, J.-H. Hsu, H.-C. Chang, Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew. Chem. Int. Ed. 50, 2262–2265 (2011). doi:10.1002/anie.201007215

    Article  Google Scholar 

  59. A. Bumb, S.K. Sarkar, N. Billington, M.W. Brechbiel, K.C. Neuman, Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization. J. Am. Chem. Soc. 135, 7815–7818 (2013). doi:10.1021/ja4016815

    Article  Google Scholar 

  60. S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gototsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128, 11635–11642 (2006). doi:10.1021/ja063303n

    Article  Google Scholar 

  61. J. Havlik, V. Petrakova, I. Rehor, V. Petrak, M. Gulka, J. Stursa, J. Kucka, J. Ralis, T. Rendler, S.-Y. Lee, R. Reuter, J. Wrachtrup, M. Ledvina, M. Nesladek, P. Cigler, Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale 5, 3208–3211 (2013). doi:10.1039/C2NR32778C

    Article  Google Scholar 

  62. S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, Y.-C. Yu, Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc. 127, 17604–17605 (2005). doi:10.1021/ja0567081

    Article  Google Scholar 

  63. S. Manchun, C.R. Dass, P. Sriamornsak, Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sci. 90, 381–387 (2012). doi:10.1016/j.lfs.2012.01.008

    Article  Google Scholar 

  64. D. Wilms, S.-E. Stiriba, H. Frey, Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Acc. Chem. Res. 43, 129–141 (2010). doi:10.1021/ar900158p

    Article  Google Scholar 

  65. L. Zhou, C. Gao, W. Xu, X. Wang, Y. Xu, Enhanced biocompatibility and biostability of CdTe quantum dots by facile surface-initiated dendritic polymerization. Biomacromolecules 10, 1865–1874 (2009). doi:10.1021/bm9002877

    Article  Google Scholar 

  66. S. Sotoma, R. Igarashi, J. Iimura, Y. Kumiya, H. Tochio, Y. Harada, M. Shirakawa, Suppression of non-specific protein-nanodiamond adsorption enabling specific targeting of nanodiamonds to bio-molecules of interest. Chem. Lett. 44, 354–356 (2015). doi:10.1246/cl.141036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Komatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Komatsu, N., Zhao, L. (2016). Polyglycerol-Functionalized Nanoparticles for Biomedical Imaging. In: Yang, N., Jiang, X., Pang, DW. (eds) Carbon Nanoparticles and Nanostructures. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-28782-9_5

Download citation

Publish with us

Policies and ethics