Skip to main content

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Sensor skins can be broadly defined as distributed sensors over a surface to provide proprioceptive, tactile, and environmental feedback. This chapter focuses on sensors and sensor networks that can achieve strains on the same order as elastomers and human skin, which makes these sensors compatible with emerging wearable technologies. A combination of material choices, processing limitations, and design must be considered in order to achieve multimodal, biocompatible sensor skins capable of operating on objects and bodies with complex geometries and dynamic functionalities. This chapter overviews the commonly used materials, fabrication techniques, structures and designs of stretchable sensor skins, and also highlights the current challenges and future opportunities of such sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.M.A. Ashruf, Thin flexible pressure sensors. Sens. Rev. 22(4), 322–327 (2002)

    Article  Google Scholar 

  2. C. Pang, C. Lee, K.Y. Suh, Recent advances in flexible sensors for wearable and implantable devices. J. Appl. Polym. Sci. 130(3), 1429–1441 (2013)

    Article  Google Scholar 

  3. S. Khan, L. Lorenzelli, R.S. Dahiya, Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15(6), 3164–3185 (2015)

    Article  Google Scholar 

  4. Patrick J. Codd, Arabagi Veaceslav, Andrew H. Gosline, Pierre E. Dupont, Novel pressure-sensing skin for detecting impending tissue damage during neuroendoscopy. J. Neurosurg.: Pediatr. 13(1), 114–121 (2013)

    Google Scholar 

  5. A.T. Asbeck, S.M.M. De Rossi, K.G. Holt, C.J. Walsh, A biologically inspired soft exosuit for walking assistance. Int. J. Robot. Res. 0278364914562476 (2015)

    Google Scholar 

  6. J.-B. Chossat, Y. Tao, V. Duchaine, Y.L. Park, Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing, in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2568–2573, May 2015

    Google Scholar 

  7. K.C. Galloway, P. Polygerinos, C.J. Walsh, R.J. Wood, Mechanically programmable bend radius for fiber-reinforced soft actuators, in 2013 16th International Conference on Advanced Robotics (ICAR), pp. 1–6, Nov 2013

    Google Scholar 

  8. M. Wehner, B. Quinlivan, P.M. Aubin, E. Martinez-Villalpando, M. Baumann, L. Stirling, K. Holt, R. Wood, C. Walsh, A lightweight soft exosuit for gait assistance, in 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 3362–3369, May 2013

    Google Scholar 

  9. D.H. Kim, Y.S. Kim, J. Wu, Z. Liu, J. Song, H.S. Kim, Y.Y. Huang, K.C. Hwang, J.A. Rogers, Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv. Mater. 21(36), 3703–3707 (2009)

    Article  Google Scholar 

  10. J.C. McDonald, G.M. Whitesides, Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35(7), 491–499 (2002)

    Article  Google Scholar 

  11. S. Zhu, J.-H. So, R.L. Mays, S. Desai, W.R. Barnes, B. Pourdeyhimi, M.D. Dickey, Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv. Fun. Mat. 32(18), 2308–2314 (2013)

    Google Scholar 

  12. L. Mullins, Effect of stretching on the properties of rubber. Rubber Chem. Technol. 21(2), 281–300 (1948)

    Article  Google Scholar 

  13. W.N. Findley, F.A. Davis, Creep and Relaxation of Nonlinear Viscoelastic Materials. Courier Corporation (2013)

    Google Scholar 

  14. N.G. McCrum, C.P. Buckley, C.B. Bucknall, Principles of Polymer Engineering. Oxford University Press (1997)

    Google Scholar 

  15. A. Bratov, J. Muñoz, C. Dominguez, J. Bartroli, Photocurable polymers applied as encapsulating materials for ISFET production. Sens. Actuators, B: Chem. 25(13), 823–825 (1995)

    Google Scholar 

  16. R.K. Kramer, C. Majidi, R. Sahai, R.J. Wood. Soft curvature sensors for joint angle proprioception, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1919–1926, 2011

    Google Scholar 

  17. R.F. Shepherd, F. Ilievski, W. Choi, S.A. Morin, A.A. Stokes, A.D. Mazzeo, X. Chen, M. Wang, G.M. Whitesides, Multigait soft robot. Proc. Natl. Acad. Sci. 108(51), 20400–20403 (2011)

    Article  Google Scholar 

  18. J.C. Case, E.L. White, R.K. Kramer, Soft material characterization for robotic applications. Soft Robot. 2(2), 80–87 (2015)

    Article  Google Scholar 

  19. M.A. Eddings, M.A. Johnson, B.K. Gale, Determining the optimal PDMSPDMS bonding technique for microfluidic devices. J. Micromech. Microeng. 18(6), 067001 (2008)

    Article  Google Scholar 

  20. D.H. Kim, Z. Liu, Y.S. Kim, J. Wu, J. Song, H.S. Kim, Y. Huang, K.C. Hwang, Y. Zhang, J.A. Rogers, Optimized structural designs for stretchable silicon integrated circuits. Small 5(24), 2841–2847 (2009)

    Article  Google Scholar 

  21. D.Y. Khang, H. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311(5758), 208–212 (2006)

    Article  Google Scholar 

  22. D.H. Kim, J.A. Rogers, Stretchable electronics: materials strategies and devices. Adv. Mater. 20(24), 4887–4892 (2008)

    Article  Google Scholar 

  23. J.A. Fan, W.H. Yeo, Y. Su, Y. Hattori, W. Lee, S.Y. Jung, Y. Zhang, Z. Liu, H. Cheng, L. Falgout, M. Bajema, T. Coleman, D. Gregoire, R.J. Larsen, Y. Huang, J.A. Rogers, Fractal design concepts for stretchable electronics. Nat. Commun. 5 (2014)

    Google Scholar 

  24. G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)

    Article  Google Scholar 

  25. C. Majidi, R. Kramer, R.J. Wood, A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Mater. Struct. 20(10), 105017 (2011)

    Article  Google Scholar 

  26. Y.L. Park, B.R. Chen, R.J. Wood, Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sens. J. 12(8), 2711–2718 (2012)

    Article  Google Scholar 

  27. A. Anderson, Y. Menguc, R.J. Wood, D. Newman, Development of the polipo pressure sensing system for dynamic space-suited motion. IEEE Sens. J. 15(11), 6229–6237 (2015)

    Article  Google Scholar 

  28. J.W. Boley, E.L. White, G.T.-C. Chiu, R.K. Kramer, Direct writing of gallium-indium alloy for stretchable electronics. Adv. Funct. Mater. 24(23), 3501–3507 (2014)

    Article  Google Scholar 

  29. J.B. Chossat, H.S. Shin, Y.L. Park, V. Duchaine, Soft tactile skin using an embedded ionic liquid and tomographic imaging. J. Mech. Rob. 7(2), 021008 (2015)

    Article  Google Scholar 

  30. A.P. Gerratt, H.O. Michaud, S.P. Lacour, Elastomeric electronic skin for prosthetic tactile sensation. Adv. Funct. Mater. 25(15), 2287–2295 (2015)

    Article  Google Scholar 

  31. F.L. Hammond, R.K. Kramer, Q. Wan, R.D. Howe, R.J. Wood, Soft tactile sensor arrays for micromanipulation, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 25–32, Oct 2012

    Google Scholar 

  32. R.K. Kramer, C.Majidi, R.J. Wood, Wearable tactile keypad with stretchable artificial skin, in 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1103–1107 (2011)

    Google Scholar 

  33. R. Matsuzaki, K. Tabayashi, Highly stretchable, global, and distributed local strain sensing line using GaInSn electrodes for wearable electronics. Adv. Funct. Mater. 25(25), 3806–3813 (2015)

    Article  Google Scholar 

  34. J.T.B. Overvelde, Y. Mengüç, P. Polygerinos, Y. Wang, Z. Wang, C.J. Walsh, R.J. Wood, K. Bertoldi, Mechanical and electrical numerical analysis of soft liquid-embedded deformation sensors analysis. Extreme Mech. Lett. 1, 42–46 (2014)

    Google Scholar 

  35. J. Choi, S. Kim, J. Lee, B. Choi, Improved capacitive pressure sensors based on liquid alloy and silicone elastomer. IEEE Sens. J. 15(8), 4180–4181 (2015)

    Article  Google Scholar 

  36. S. Baek, D.J. Won, J.G. Kim, J. Kim, Development and analysis of a capacitive touch sensor using a liquid metal droplet. J. Micromech. Microeng. 25(9), 095015 (2015)

    Article  Google Scholar 

  37. D. Ruben, P. Wong, J.D. Posner, V.J. Santos, Flexible microfluidic normal force sensor skin for tactile feedback. Sens. Actuators, A 179, 62–69 (2012)

    Article  Google Scholar 

  38. K. Noda, E. Iwase, K. Matsumoto, I. Shimoyama, Stretchable liquid tactile sensor for robot-joints, in 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 4212–4217, May 2010

    Google Scholar 

  39. J.-B. Chossat, Y.-L. Park, R.J. Wood, V. Duchaine, A soft strain sensor based on ionic and metal liquids. IEEE Sens. J. 13(9), 3405–3414 (2013)

    Article  Google Scholar 

  40. C.R. Merritt, H.T. Nagle, E. Grant, Textile-based capacitive sensors for respiration monitoring. IEEE Sens. J. 9(1), 71–78 (2009)

    Article  Google Scholar 

  41. M. Stoppa, A. Chiolerio, Wearable electronics and smart textiles: a critical review. Sensors 14(7), 11957–11992 (2014)

    Article  Google Scholar 

  42. C. Mattmann, F. Clemens, G. Trster, Sensor for measuring strain in textile. Sensors 8(6), 3719–3732 (2008)

    Article  Google Scholar 

  43. L.M. Castano, A.B. Flatau, Smart fabric sensors and e-textile technologies: a review. Smart Mater. Struct. 23(5), 053001 (2014)

    Article  Google Scholar 

  44. L. Capineri, Resistive sensors with smart textiles for wearable technology: from fabrication processes to integration with electronics. Procedia Eng. 87, 724–727 (2014)

    Article  Google Scholar 

  45. R. Xu, K.I. Jang, Y. Ma, H.N. Jung, Y. Yang, M. Cho, Y. Zhang, Y. Huang, J.A. Rogers, Fabric-based stretchable electronics with mechanically optimized designs and prestrained composite substrates. Extreme Mech. Lett. (2014)

    Google Scholar 

  46. L. Hu, M. Pasta, F.L. Mantia, L.F. Cui, S. Jeong, H.D. Deshazer, J.W. Choi, S.M. Han, Y. Cui, Stretchable, porous, and conductive energy textiles. Nano Lett. 10(2), 708–714 (2010)

    Article  Google Scholar 

  47. C. Cochrane, V. Koncar, M. Lewandowski, C. Dufour, Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors 7(4), 473–492 (2007)

    Article  Google Scholar 

  48. R.L. Crabb, F.C. Treble, Thin silicon solar cells for large flexible arrays. Nature 213(5082), 1223–1224 (1967)

    Article  Google Scholar 

  49. K.A. Ray, Flexible solar cell arrays for increased space power. IEEE Trans. Aerosp. Electron. Syst. AES-3(1), 107–115 (1967)

    Article  Google Scholar 

  50. K. Jain, M. Klosner, M. Zemel, S. Raghunandan, Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production. Proc. IEEE 93(8), 1500–1510 (2005)

    Article  Google Scholar 

  51. D.H. Kim, J. Song, W.M. Choi, H.S. Kim, R.H. Kim, Z. Liu, Z. Liu, Y.Y. Huang, K.C. Hwang, Y.W. Zhang, J.A. Rogers, Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. PNAS 105(48), 18675–18680 (2008)

    Article  Google Scholar 

  52. G.H. Gelinck, H.E.A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J.B.P.H. van der Putten, T.C.T. Geuns, M. Beenhakkers, J.B. Giesbers, B.H. Huisman, E.J. Meijer, E.M. Benito, F.J. Touwslager, A.W. Marsman, B.J. E. van Rens, D.M. de Leeuw, Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 3(2), 106–110 (2004)

    Google Scholar 

  53. J.A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V.R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic, Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Nat. Acad. Sci. U.S.A. 98(9), 4835–4840 (2001) (ArticleType: research-article/Full publication date: Apr. 24, 2001/Copyright 2001 National Academy of Sciences)

    Google Scholar 

  54. C. Wang, G.G. Wallace, Flexible electrodes and electrolytes for energy storage. Electrochimica Acta (2015)

    Google Scholar 

  55. S.D. Perera, B. Patel, N. Nijem, K. Roodenko, O. Seitz, J.P. Ferraris, Y.J. Chabal, K.J. Balkus, Vanadium oxide nanowire carbon nanotube binder-free flexible electrodes for supercapacitors. Adv. Energy Mater. 1(5), 936–945 (2011)

    Article  Google Scholar 

  56. S.I. Park, Y. Xiong, R.H. Kim, P. Elvikis, M. Meitl, D.H. Kim, J. Wu, J. Yoon, C.J. Yu, Z. Liu, Y. Huang, K.C. Hwang, P. Ferreira, X. Li, K. Choquette, J.A. Rogers, Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 325(5943), 977–981 (2009)

    Article  Google Scholar 

  57. P. Salonen, M. Keskilammi, J. Rantanen, L. Sydanheimo, A novel Bluetooth antenna on flexible substrate for smart clothing, in 2001 IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, pp. 789–794, 2001

    Google Scholar 

  58. C. Cibin, P. Leuchtmann, M. Gimersky, R. Vahldieck, S. Moscibroda, A flexible wearable antenna, in IEEE Antennas and Propagation Society International Symposium, 2004, vol. 4, pp. 3589–3592, June 2004

    Google Scholar 

  59. J.C.G. Matthews, G. Pettitt, Development of flexible, wearable antennas, in 3rd European Conference on Antennas and Propagation, 2009. EuCAP 2009, pp. 273–277, March 2009

    Google Scholar 

  60. A.J. Baca, J.H. Ahn, Y. Sun, M.A. Meitl, E. Menard, H.S. Kim, W.M. Choi, D.H. Kim, Y. Huang, J.A. Rogers, Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem. Int. Ed. 47(30), 5524–5542 (2008)

    Google Scholar 

  61. J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010)

    Article  Google Scholar 

  62. H.C. Ko, G. Shin, S. Wang, M.P. Stoykovich, J.W. Lee, D.H. Kim, J.S. Ha, Y. Huang, K.C. Hwang, J.A. Rogers, Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small 5(23), 2703–2709 (2009)

    Google Scholar 

  63. D.H. Kim, J. Xiao, J. Song, Y. Huang, J.A. Rogers, Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22(19), 2108–2124 (2010)

    Article  Google Scholar 

  64. D.H. Kim, N. Lu, Y. Huang, J.A. Rogers, Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bull. 37(03), 226–235 (2012)

    Article  Google Scholar 

  65. P.J. Hung, K. Jeong, G.L. Liu, L.P. Lee, Microfabricated suspensions for electrical connections on the tunable elastomer membrane. Appl. Phys. Lett. 85(24), 6051–6053 (2004)

    Article  Google Scholar 

  66. S.P. Lacour, J. Jones, S. Wagner, T. Li, Z. Suo. Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93(8), 1459–1467 (2005)

    Google Scholar 

  67. D.H. Kim, J.H. Ahn, W.M. Choi, H.S. Kim, T.H. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, J.A. Rogers, Stretchable and foldable silicon integrated circuits. Science 320(5875), 507–511 (2008)

    Google Scholar 

  68. S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J.A. Fan, Y. Su, J. Su, H. Zhang, H. Cheng, B. Lu, C. Yu, C. Chuang, T. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P.V. Braun, Y. Huang, U. Paik, J.A. Rogers, Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013)

    Article  Google Scholar 

  69. D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers. Epidermal electronics. Science 333(6044), 838–843 (2011)

    Google Scholar 

  70. J. Kim, A. Banks, H. Cheng, Z. Xie, S. Xu, K.I. Jang, J.W. Lee, Z. Liu, P. Gutruf, X. Huang, P. Wei, F. Liu, K. Li, M. Dalal, R. Ghaffari, X. Feng, Y. Huang, S. Gupta, U. Paik, J.A. Rogers, Epidermal electronics with advanced capabilities in near-field communication. Small 11(8), 906–912 (2015)

    Google Scholar 

  71. X. Hu, P. Krull, de B. Graff, K. Dowling, J.A. Rogers, W.J. Arora, Stretchable inorganic-semiconductor electronic systems. Adv. Mater. 23(26), 2933–2936 (2011)

    Google Scholar 

  72. D.S. Gray, J. Tien, C.S. Chen, High-conductivity elastomeric electronics. Adv. Mater. 16(5), 393–397 (2004)

    Article  Google Scholar 

  73. Y.Y. Hsu, B. Dimcic, M. Gonzalez, F. Bossuyt, J. Vanfleteren, de I. Wolf, Reliability assessment of stretchable interconnects, in 2010 5th International Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT), pp. 1–4, Oct 2010

    Google Scholar 

  74. F. Bossuyt, J. Guenther, T. Lher, M. Seckel, T. Sterken, J. de Vries, Cyclic endurance reliability of stretchable electronic substrates. Microelectron. Reliab. 51(3), 628–635 (2011)

    Article  Google Scholar 

  75. S.P. Lacour, D. Chan, S. Wagner, T. Li, Z. Suo, Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl. Phys. Lett. 88(20), 204103–204103-3 (2006)

    Google Scholar 

  76. N.B. Morley, J. Burris, L.C. Cadwallader, M.D. Nornberg, GaInSn usage in the research laboratory. Rev. Sci. Instrum. 79(5), 056107 (2008)

    Article  Google Scholar 

  77. M.D. Dickey, R.C. Chiechi, R.J. Larsen, E.A. Weiss, D.A. Weitz, G.M. Whitesides, Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18(7), 1097–1104 (2008)

    Article  Google Scholar 

  78. C. Ladd, J.H. So, J. Muth, M.D. Dickey, 3d Printing of free standing liquid metal microstructures. Adv. Mater. 25(36), 5081–5085 (2013)

    Article  Google Scholar 

  79. Y.L. Park, C. Majidi, R. Kramer, P. Brard, R.J. Wood, Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 20(12), 125029 (2010)

    Google Scholar 

  80. M.D. Dickey, Emerging applications of liquid metals featuring surface oxides. ACS Appl. Mater. Interfaces (2014)

    Google Scholar 

  81. A. Tabatabai, A. Fassler, C. Usiak, C. Majidi, Liquid-phase gallium indium alloy electronics with microcontact printing. Langmuir 29(20), 6194–6200 (2013)

    Article  Google Scholar 

  82. J. Wissman, T. Lu, C. Majidi, Soft-matter electronics with stencil lithography, in 2013 IEEE Sensors, pp. 1–4, 2013

    Google Scholar 

  83. Q. Zhang, Y. Gao, J. Liu, Atomized spraying of liquid metal droplets on desired substrate surfaces as a generalized way for ubiquitous printed electronics. Appl. Phys. A 1–7 (2013)

    Google Scholar 

  84. D. Kim, D.W. Lee, W. Choi, Jeong-Bong Lee, A super-lyophobic 3-D PDMS channel as a novel microfluidic platform to manipulate oxidized galinstan. J. Microelectromech. Syst. 22(6), 1267–1275 (2013)

    Article  Google Scholar 

  85. R.K. Kramer, J. William Boley, H.A. Stone, J.C. Weaver, R.J. Wood, Effect of microtextured surface topography on the wetting behavior of eutectic gallium indium alloys. Langmuir 30(2), 533–539 (2014)

    Google Scholar 

  86. G. Li, X. Wu, D.W. Lee, Selectively plated stretchable liquid metal wires for transparent electronics. Sens. Actuators B: Chem. 221, 1114–1119 (2015)

    Article  Google Scholar 

  87. J.W. Boley, E.L. White, R.K. Kramer, Mechanically sintered gallium indium nanoparticles. Adv. Mater. 27(14), 2355–2360 (2015)

    Article  Google Scholar 

  88. T. Lu, L. Finkenauer, J. Wissman, C. Majidi, Rapid prototyping for soft-matter electronics. Adv. Funct. Mater. (2014)

    Google Scholar 

  89. D.M. Vogt, Y.L. Park, R.J. Wood, Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels. IEEE Sens. J. 13(10), 4056–4064 (2013)

    Article  Google Scholar 

  90. J.H. So, J. Thelen, A. Qusba, G.J. Hayes, G. Lazzi, M.D. Dickey, Reversibly deformable and mechanically tunable fluidic antennas. Adv. Funct. Mater. 19(22), 3632–3637 (2009)

    Google Scholar 

  91. M. Kubo, X. Li, C. Kim, M. Hashimoto, B.J. Wiley, D. Ham, G.M .Whitesides, Stretchable microfluidic radiofrequency antennas. Adv. Mater. 22(25), 2749–2752 (2010)

    Google Scholar 

  92. Z. Wu, Microfluidic stretchable radio frequency devices, in Proceedings of the IEEE, 2015

    Google Scholar 

  93. E. Palleau, S. Reece, S.C. Desai, M.E. Smith, M.D. Dickey, Self-healing stretchable wires for reconfigurable circuit wiring and 3d microfluidics. Adv. Mater. 25(11), 1589–1592 (2013)

    Google Scholar 

  94. J.H. So, H.J. Koo, M.D. Dickey, O.D. Velev, Ionic current rectification in soft-matter diodes with liquid-metal electrodes. Adv. Funct. Mater. 22(3), 625–631 (2012)

    Article  Google Scholar 

  95. W.-Y. Tseng, J.S. Fisher, J.L. Prieto, K. Rinaldi, G. Alapati, A.P. Lee, A slow-adapting microfluidic-based tactile sensor. J. Micromech. Microeng. 19(8), 085002 (2009)

    Article  Google Scholar 

  96. N. Wettels, V.J. Santos, R.S. Johansson, G.E. Loeb, Biomimetic tactile sensor array. Adv. Robot. 22(8), 829–849 (2008)

    Article  Google Scholar 

  97. Y.N. Cheung, Y. Zhu, C.H. Cheng, C. Chao, W.W.F. Leung, A novel fluidic strain sensor for large strain measurement. Sens. Actuators, A 147(2), 401–408 (2008)

    Article  Google Scholar 

  98. G. Cummins, M.P.Y. Desmulliez, Inkjet printing of conductive materials: a review. Circuit World 38(4), 193–213 (2012)

    Article  Google Scholar 

  99. Y. Zhang, P. Zhu, G. Li, T. Zhao, X. Fu, R. Sun, F. Zhou, C.P. Wong, Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink. ACS Appl. Mater. Interfaces 6(1), 560–567 (2014)

    Article  Google Scholar 

  100. S. Merilampi, T. Laine-Ma, P. Ruuskanen, The characterization of electrically conductive silver ink patterns on flexible substrates. Microelectron. Reliab. 49(7), 782–790 (2009)

    Article  Google Scholar 

  101. S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, S.H. Ko, Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano 7(6), 5024–5031 (2013)

    Article  Google Scholar 

  102. M. Grouchko, A. Kamyshny, C.F. Mihailescu, D.F. Anghel, S. Magdassi, Conductive inks with a built-in mechanism that enables sintering at room temperature. ACS Nano 5(4), 3354–3359 (2011)

    Google Scholar 

  103. A. Kamyshny, M. Ben-Moshe, S. Aviezer, S. Magdassi, Ink-jet printing of metallic nanoparticles and microemulsions. Macromol. Rapid Commun. 26(4), 281–288 (2005)

    Article  Google Scholar 

  104. F. Loffredo, A. De Girolamo Del Mauro, G. Burrasca, V. La Ferrara, L. Quercia, E. Massera, G. Di Francia, D. Della Sala, Ink-jet printing technique in polymer/carbon black sensing device fabrication. Sens. Actuators B: Chem. 143(1), 421–429 (2009)

    Google Scholar 

  105. S.M. Bidoki, D.M. Lewis, M. Clark, A. Vakorov, P.A. Millner, D. McGorman, Ink-jet fabrication of electronic components. J. Micromech. Microeng. 17(5), 967 (2007)

    Article  Google Scholar 

  106. T.H. Kang, C. Merritt, B. Karaguzel, J. Wilson, P.D. Franzon, B. Pourdeyhimi, E. Grant, T. Nagle, Sensors on textile substrates for home-based healthcare monitoring, in Proceedings of the 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare (D2H206), pp. 5–7, 2006

    Google Scholar 

  107. Y.L. Tai, Z.G. Yang, Fabrication of paper-based conductive patterns for flexible electronics by direct-writing. J. Mater. Chem. 21(16), 5938 (2011)

    Article  Google Scholar 

  108. H.T. Wang, O.A. Nafday, J.R. Haaheim, E. Tevaarwerk, N.A. Amro, R.G. Sanedrin, C.Y. Chang, F. Ren, S.J. Pearton, Toward conductive traces: dip pen nanolithography of silver nanoparticle-based inks. Appl. Phys. Lett. 93(14), 143105 (2008)

    Article  Google Scholar 

  109. A. Russo, B.Y. Ahn, J.J. Adams, E.B. Duoss, J.T. Bernhard, J.A. Lewis, Pen-on-paper flexible electronics. Adv. Mater. 23(30), 3426–3430 (2011)

    Google Scholar 

  110. L.Y. Xu, G.Y. Yang, H.Y. Jing, J. Wei, Y.D. Han, Aggraphene hybrid conductive ink for writing electronics. Nanotechnology 25(5), 055201 (2014)

    Article  Google Scholar 

  111. S. Khan, L. Lorenzelli, R.S. Dahiya, Screen printed flexible pressure sensors skin, in 2014 25th Annual SEMI on Advanced Semiconductor Manufacturing Conference (ASMC), pp. 219–224, May 2014

    Google Scholar 

  112. K.Y. Chun, Y. Oh, J. Rho, J.H. Ahn, Y.J. Kim, H.R. Choi, S. Baik, Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5(12), 853–857 (2010)

    Google Scholar 

  113. M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M.B. Shim, S. Jeon, D.Y. Chung, J. Bae, J. Park, U. Jeong, K. Kim, Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7(12), 803–809 (2012)

    Article  Google Scholar 

  114. Y.J. Yang, M.Y. Cheng, W.Y. Chang, L.C. Tsao, S.A. Yang, W.P. Shih, F.Y. Chang, S.H. Chang, K.C. Fan, An integrated flexible temperature and tactile sensing array using PI-copper films. Sens. Actuators, A 143(1), 143–153 (2008)

    Article  Google Scholar 

  115. R. Verdejo, M.M. Bernal, L.J. Romasanta, M.A. Lopez-Manchado, Graphene filled polymer nanocomposites. J. Mater. Chem. 21(10), 3301–3310 (2011)

    Article  Google Scholar 

  116. M. Chen, T. Tao, L. Zhang, W. Gao, C. Li, Highly conductive and stretchable polymer composites based on graphene/MWCNT network. Chem. Commun. 49(16), 1612 (2013)

    Article  Google Scholar 

  117. M. Knite, V. Teteris, A. Kiploka, J. Kaupuzs, Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials. Sens. Actuators, A 110(13), 142–149 (2004)

    Article  Google Scholar 

  118. D.J. Lipomi, M. Vosgueritchian, B.C.K. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, Z. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nano 6(12), 788–792 (2011)

    Google Scholar 

  119. S. Jung, J.H. Kim, J. Kim, S. Choi, J. Lee, I. Park, T. Hyeon, D.H. Kim, Reverse-micelle-induced porous pressure-sensitive rubber for wearable human machine interfaces. Adv. Mater. 26(28), 4825–4830 (2014)

    Google Scholar 

  120. A. Fassler, C. Majidi, Liquid-phase metal inclusions for a conductive polymer composite. Adv. Mater. 27(11), 1928–1932 (2015)

    Article  Google Scholar 

  121. Y. Lin, C. Cooper, M. Wang, J.J. Adams, J. Genzer, M.D. Dickey, Handwritten, soft circuit boards and antennas using liquid metal nanoparticles. Small (2015)

    Google Scholar 

  122. S.G. Kandlikar, W.J. Grande, Evolution of microchannel flow passages thermohydraulic performance and fabrication technology. Heat Transfer Eng. 24(1), 3–17 (2003)

    Article  Google Scholar 

  123. Y. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28(1), 153–184 (1998)

    Article  Google Scholar 

  124. L. Geppert, Semiconductor lithography for the next millennium. IEEE Spectr. 33(4), 33–38 (1996)

    Article  Google Scholar 

  125. S. Okazaki, Resolution limits of optical lithography. J. Vac. Sci. Technol., B 9(6), 2829–2833 (1991)

    Article  Google Scholar 

  126. E.A. Waddell, Laser ablation as a fabrication technique for microfluidic devices, in Microfluidic Techniques, ed. by S.D. Minteer, Number 321 in Methods In Molecular Biology (Humana Press, Totowa, 2006), pp. 27–38. doi:10.1385/1-59259-997-4:27

  127. H.J. Kim, T. Maleki, P. Wei, B. Ziaie, A biaxial stretchable interconnect with liquid-alloy-covered joints on elastomeric substrate. J. Microelectromech. Syst. 18(1), 138–146 (2009)

    Google Scholar 

  128. H.J. Kim, C. Son, B. Ziaie, A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Appl. Phys. Lett. 92(1), 011904–011904-3 (2008)

    Google Scholar 

  129. T. Li, Z. Huang, Z. Suo, S.P. Lacour, S. Wagner, Stretchability of thin metal films on elastomer substrates. Appl. Phys. Lett. 85(16), 3435–3437 (2004)

    Google Scholar 

  130. Y. Arafat, I. Dutta, R. Panat, Super-stretchable metallic interconnects on polymer with a linear strain of up to 100 %. Appl. Phys. Lett. 107(8), 081906 (2015)

    Article  Google Scholar 

  131. T. Lu, J. Wissman, F.N.U. Ruthika, C. Majidi, Soft anisotropic conductors as electric vias for Ga-based liquid metal circuits. ACS Appl. Mater. Interfaces (2015)

    Google Scholar 

  132. Y.L. Zheng, X.R. Ding, C.C.Y. Poon, B.P.L. Lo, H. Zhang, X.L. Zhou, G.Z. Yang, N. Zhao, Y.T. Zhang, Unobtrusive sensing and wearable devices for health informatics. IEEE Trans. Biomed. Eng. 61(5), 1538–1554 (2014)

    Google Scholar 

  133. N. Lu, D.H. Kim, Flexible and stretchable electronics paving the way for soft robotics. Soft Rob. 1(1), 53–62 (2014)

    Article  Google Scholar 

  134. H.K. Lee, S.I. Chang, E. Yoon, A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment. J. Microelectromech. Syst. 15(6), 1681–1686 (2006)

    Article  Google Scholar 

  135. I.M. Koo, K. Jung, J.C. Koo, J.D. Nam, Y.K. Lee, H.R. Choi, Development of soft-actuator-based wearable tactile display. IEEE Trans. Rob. 24(3), 549–558 (2008)

    Google Scholar 

  136. J. Engel, J. Chen, C. Liu, Development of polyimide flexible tactile sensor skin. J. Micromech. Microeng. 13(3), 359 (2003)

    Article  Google Scholar 

  137. J.K. Paik, R.K. Kramer, R.J. Wood, Stretchable circuits and sensors for robotic origami, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 414–420, 2011

    Google Scholar 

  138. M. Yuen, A. Cherian, J.C. Case, J. Seipel, R.K. Kramer, Conformable actuation and sensing with robotic fabric, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 580–586. IEEE, 2014

    Google Scholar 

  139. Y.L. Park, B.R. Chen, C. Majidi, R.J. Wood, R. Nagpal, E. Goldfield, Active modular elastomer sleeve for soft wearable assistance robots, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1595–1602, 2012

    Google Scholar 

  140. Y.L. Park, R.J. Wood, Smart pneumatic artificial muscle actuator with embedded microfluidic sensing, in 2013 IEEE Sensors, pp. 1–4, 2013

    Google Scholar 

  141. G. Berselli (ed.), Smart Actuation and Sensing Systems—Recent Advances and Future Challenges (InTech, Rijeka, 2012)

    Google Scholar 

  142. P. Polygerinos, K.C. Galloway, E. Savage, M. Herman, K. O’Donnell, C.J. Walsh, Soft robotic glove for hand rehabilitation and task specific training, in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2913–2919, May 2015

    Google Scholar 

  143. A.T. Asbeck, K. Schmidt, I. Galiana, D. Wagner, C.J. Walsh, Multi-joint soft exosuit for gait assistance, in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 6197–6204, May 2015

    Google Scholar 

  144. A. Asbeck, S. De Rossi, I. Galiana, Y. Ding, C. Walsh, Stronger, smarter, softer: next-generation wearable robots. IEEE Robot. Autom. Mag. 21(4), 22–33 (2014)

    Article  Google Scholar 

  145. Y. Menguc, Y.L. Park, E. Martinez-Villalpando, P. Aubin, M. Zisook, L. Stirling, R.J. Wood, C.J. Walsh, Soft wearable motion sensing suit for lower limb biomechanics measurements, in 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 5309–5316, May 2013

    Google Scholar 

  146. N. Lu, C. Lu, S. Yang, J. Rogers, Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22(19), 4044–4050 (2012)

    Article  Google Scholar 

  147. F. Gemperle, N. Ota, D. Siewiorek. Design of a wearable tactile display, in Proceedings of the Fifth International Symposium on Wearable Computers, 2001, pp. 5–12, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Kramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Case, J., Yuen, M., Mohammed, M., Kramer, R. (2016). Sensor Skins: An Overview. In: Rogers, J., Ghaffari, R., Kim, DH. (eds) Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28694-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28694-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28692-1

  • Online ISBN: 978-3-319-28694-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics