Skip to main content

Ultrathin, Skin-Like Devices for Precise, Continuous Thermal Property Mapping of Human Skin and Soft Tissues

  • Chapter
  • First Online:
Stretchable Bioelectronics for Medical Devices and Systems

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Precision thermal measurements of skin and soft tissue can provide clinically relevant information about cardiovascular health, cognitive state, hydration levels, heterogeneous vasculature changes, and many other important aspects of human physiology. In this chapter we discuss recent advances in ultrathin, compliant skin-like sensor/actuator technologies that enable forms of continuous thermal mapping, of temperature as well as transport properties, that are unavailable with other methods. We review the key mechanical and thermal properties that are fundamental to the operation of this class of devices. Further discussion of devices configured for mapping temperature, monitoring local thermal transport and skin hydration, and mapping thermal transport for blood flow analysis provides a few examples of the types of capabilities that are enabled with these technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.M. Gorbach, H.C. Ackerman, W.M. Liu, J.M. Meyer, P.L. Littel, C. Seamon, E. Footman, A. Chi, S. Zorca, M.L. Krajewski, M.J. Cuttica, R.F. Machado, R.O. Cannon, G.J. Kato, Infrared imaging of nitric oxide-mediated blood flow in human sickle cell disease. Microvasc. Res. 84, 262–269 (2012)

    Article  Google Scholar 

  2. M.B. Ducharme, P. Tikuisis, In vivo thermal conductivity of the human forearm tissues. J. Appl. Physiol. 70, 2682–2690 (1991)

    Google Scholar 

  3. T. Togawa, H. Saito, Non-contact imaging of thermal properties of the skin. Physiol. Meas. 15, 291–298 (1994)

    Article  Google Scholar 

  4. D.A. Boas, A.K. Dunn, Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 15 (2010)

    Google Scholar 

  5. M. Draijer, E. Hondebrink, T. Van Leeuwen, W. Steenbergen, Review of laser speckle contrast techniques for visualizing tissue perfusion. Lasers Med. Sci. 24, 639–651 (2009)

    Article  Google Scholar 

  6. A.K. Dunn, H. Bolay, M.A. Moskowitz, D.A. Boas, Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab. 21, 195–201 (2001)

    Article  Google Scholar 

  7. G.E. Nilsson, T. Tenland, P.A. Oberg, Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans. Biomed. Eng. 27, 597–604 (1980)

    Article  Google Scholar 

  8. P.A. Oberg, Laser-Doppler flowmetry. Crit. Rev. Biomed. Eng. 18, 125–161 (1990)

    Google Scholar 

  9. K. Wardell, A. Jakobsson, G.E. Nilsson, Laser Doppler perfusion imaging by dynamic light scattering. IEEE Trans. Biomed. Eng. 40, 309–316 (1993)

    Article  Google Scholar 

  10. C. Jin, Z.Z. He, S.S. Zhang, M.C. Qi, Z.Q. Sun, D.R. Di, J. Liu, A feasible method for measuring the blood flow velocity in superficial artery based on the laser induced dynamic thermography. Infrared Phys. Technol. 55, 462–468 (2012)

    Article  Google Scholar 

  11. J.R. Lindner, Microbubbles in medical imaging: Current applications and future directions. Nat. Rev. Drug Discovery 3, 527–532 (2004)

    Article  Google Scholar 

  12. B.A. Schrope, V.L. Newhouse, Second harmonic ultrasonic blood perfusion measurement. Ultrasound Med. Biol. 19, 567–579 (1993)

    Article  Google Scholar 

  13. M. Nitzan, S.O. Anteby, Y. Mahler, Transient heat clearance method for regional blood-flow measurements. Phys. Med. Biol. 30, 557–563 (1985)

    Article  Google Scholar 

  14. M. Nitzan, S.L.E. Fairs, V.C. Roberts, Simultaneous measurement of skin blood flow by the transient thermal-clearance method and laser Doppler flowmetry. Med. Biol. Eng. Comput. 26, 407–410 (1988)

    Article  Google Scholar 

  15. M. Nitzan, Y. Mahler, Theoretical-analysis of the transient thermal clearance method for regional blood-flow measurement. Med. Biol. Eng. Comput. 24, 597–601 (1986)

    Article  Google Scholar 

  16. W.J.B.M. van de Staak, A.J.M. Brakker, H.E. de Rijke-Herweijer, Measurements of thermal conductivity of skin as an indication of skin blood flow. J. Invest. Dermatol. 51, 149–154 (1968)

    Article  Google Scholar 

  17. L. Gao, Y. Zhang, V. Malyarchuk, L. Jia, K.I. Jang, R.C. Webb, H. Fu, Y. Shi, G. Zhou, L. Shi, D. Shah, X. Huang, B. Xu, C. Yu, Y. Huang, J.A. Rogers, Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat. Commun. 5, 4938 (2014)

    Article  Google Scholar 

  18. R.C. Webb, A.P. Bonifas, A. Behnaz, Y.H. Zhang, K.J. Yu, H.Y. Cheng, M.X. Shi, Z.G. Bian, Z.J. Liu, Y.S. Kim, W.H. Yeo, J.S. Park, J.Z. Song, Y.H. Li, Y.G. Huang, A.M. Gorbach, J.A. Rogers, Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12, 938–944 (2013)

    Article  Google Scholar 

  19. R.C. Webb, R.M. Pielak, P. Bastien, J. Ayers, J. Niittynen, J. Kurniawan, M. Manco, A. Lin, N.H. Cho, V. Malyrchuk, G. Balooch, J.A. Rogers, Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and actuators. PLoS ONE 10, e0118131 (2015)

    Article  Google Scholar 

  20. L. Xu, S.R. Gutbrod, A.P. Bonifas, Y. Su, M.S. Sulkin, N. Lu, H.J. Chung, K.-I. Jang, Z. Liu, M. Ying, C. Lu, R.C. Webb, J.-S. Kim, J.I. Laughner, H.Y. Cheng, Y. Liu, A. Ameen, J.W. Jeong, G.-T. Kim, Y. Huang, I.R. Efimov, J.A. Rogers, 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nature Commun. 5, 10 (2014)

    Google Scholar 

  21. X. Huang, H. Cheng, K. Chen, Y. Zhang, Y. Zhang, Y. Liu, C. Zhu, S.C. Ouyang, G.W. Kong, C. Yu, Y. Huang, J.A. Rogers, Epidermal impedance sensing sheets for precision hydration assessment and spatial mapping. IEEE Trans. Biomed. Eng. 60, 2848–2857 (2013)

    Article  Google Scholar 

  22. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013)

    Article  Google Scholar 

  23. D.H. Kim, J.H. Ahn, M.C. Won, H.S. Kim, T.H. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, J.A. Rogers, Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008)

    Article  Google Scholar 

  24. D.H. Kim, N.S. Lu, R. Ma, Y.S. Kim, R.H. Kim, S.D. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L.Z. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y.G. Huang, T. Coleman, J.A. Rogers, Epidermal electronics. Science 333, 838–843 (2011)

    Article  Google Scholar 

  25. S.P. Lacour, J. Jones, Z. Suo, S. Wagner, Design and performance of thin metal film interconnects for skin-like electronic circuits. IEEE Electron Device Lett. 25, 179–181 (2004)

    Article  Google Scholar 

  26. T. Li, Z.Y. Huang, Z. Suo, S.P. Lacour, S. Wagner, Stretchability of thin metal films on elastomer substrates. Appl. Phys. Lett. 85, 3435–3437 (2004)

    Article  Google Scholar 

  27. S.C. Mannsfeld, B.C. Tee, R.M. Stoltenberg, C.V. Chen, S. Barman, B.V. Muir, A.N. Sokolov, C. Reese, Z. Bao, Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859–864 (2010)

    Article  Google Scholar 

  28. T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, T. Sakurai, Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. USA 102, 12321–12325 (2005)

    Article  Google Scholar 

  29. J.Y. Sun, N.S. Lu, J. Yoon, K.H. Oh, Z.G. Suo, J.J. Vlassak, Inorganic islands on a highly stretchable polyimide substrate. J. Mater. Res. 24, 3338–3342 (2009)

    Article  Google Scholar 

  30. S. Wang, M. Li, J. Wu, D.-H. Kim, N. Lu, Y. Su, Z. Kang, Y. Huang, J.A. Rogers, Mechanics of epidermal electronics. J. Appl. Mech. 79, 031022 (2012)

    Article  Google Scholar 

  31. M. Drack, I. Graz, T. Sekitani, T. Someya, M. Kaltenbrunner, S. Bauer, An imperceptible plastic electronic wrap. Adv. Mater. 27, 34–40 (2015)

    Article  Google Scholar 

  32. J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)

    Article  Google Scholar 

  33. G. Schwartz, B.C.K. Tee, J. Mei, A.L. Appleton, D.H. Kim, H. Wang, Z. Bao, Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4 (2013)

    Google Scholar 

  34. C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, B. Ma, A. Javey, User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12, 899–904 (2013)

    Article  Google Scholar 

  35. Y. Zhang, H. Fu, Y. Su, S. Xu, H. Cheng, J.A. Fan, K.C. Hwang, J.A. Rogers, Y. Huang, Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater. 61, 7816–7827 (2013)

    Article  Google Scholar 

  36. Y. Zhang, H. Fu, S. Xu, J.A. Fan, K.C. Hwang, J. Jiang, J.A. Rogers, Y. Huang, A hierarchical computational model for stretchable interconnects with fractal-inspired designs. J. Mech. Phys. Solids 72, 115–130 (2014)

    Article  Google Scholar 

  37. Y. Zhang, Y. Huang, J.A. Rogers, Mechanics of stretchable batteries and supercapacitors. Curr. Opin. Solid State Mater. Sci. 19, 190–199 (2015)

    Article  Google Scholar 

  38. Y. Zhang, S. Xu, H. Fu, J. Lee, J. Su, K.C. Hwang, J.A. Rogers, Y. Huang, Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 9, 8062–8070 (2013)

    Article  Google Scholar 

  39. Y.H. Zhang, S.D. Wang, X.T. Li, J.A. Fan, S. Xu, Y.M. Song, K.J. Choi, W.H. Yeo, W. Lee, S.N. Nazaar, B.W. Lu, L. Yin, K.C. Hwang, J.A. Rogers, Y.G. Huang, Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv. Funct. Mater. 24, 2028–2037 (2014)

    Article  Google Scholar 

  40. R.C. Webb, Y. Ma, S. Krishnan, Y. Li, S. Yoon, X. Guo, X. Feng, Y. Shi, M. Seidel, N.H. Cho, J. Kurniawan, J. Ahad, N. Sheth, J. Kim, J.G.t. Taylor, T. Darlington, K. Chang, W. Huang, J. Ayers, A. Gruebele, R.M. Pielak, M.J. Slepian, Y. Huang, A.M. Gorbach, J.A. Rogers, Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Sci. Adv. 1, p. e1500701 (2015)

    Google Scholar 

  41. Z.G. Bian, J.Z. Song, R.C. Webb, A.P. Bonifas, J.A. Rogers, Y.G. Huang, Thermal analysis of ultrathin, compliant sensors for characterization of the human skin. Rsc Adv. 4, 5694–5697 (2014)

    Article  Google Scholar 

  42. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2d edn. (Clarendon Press, Oxford, 1959)

    MATH  Google Scholar 

  43. S.E. Gustafsson, Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 62, 797–804 (1991)

    Article  Google Scholar 

  44. D.G. Cahill, Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Rogers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chad Webb, R., Krishnan, S., Rogers, J.A. (2016). Ultrathin, Skin-Like Devices for Precise, Continuous Thermal Property Mapping of Human Skin and Soft Tissues. In: Rogers, J., Ghaffari, R., Kim, DH. (eds) Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28694-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28694-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28692-1

  • Online ISBN: 978-3-319-28694-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics