Skip to main content

Stretchability, Conformability, and Low-Cost Manufacture of Epidermal Sensors

  • Chapter
  • First Online:
Stretchable Bioelectronics for Medical Devices and Systems

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Epidermal sensors and electronics represent a class of artificial devices whose thickness, mass density, and mechanical stiffness are well-matched with human epidermis. They can be applied as temporary transfer tattoos on the surface of any part of human body for physiological measurements, electrical or thermal stimulation , as well as wireless communications. Except for comfort and wearability, epidermal sensors can offer unprecedented signal quality even under severe skin deformation. This chapter tries to address two fundamental mechanics challenges for epidermal sensors: first, how to predict and improve the stretchability and compliance when epidermal devices are made out of intrinsically brittle and rigid inorganic electronic materials; and second, when laminating on human skin , how to predict and improve the conformability between epidermal devices and the microscopically rough skin surfaces. Since the ideal use of epidermal devices would be one-time, disposable patches, a low cost, high throughput manufacture process called the “cut-and-paste” method is introduced at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.H. Kim, R. Ghaffari, N.S. Lu, J.A. Rogers, Flexible and stretchable electronics for bio-integrated devices. Annu. Rev. Biomed. Eng. 14, 113–128 (2012)

    Article  Google Scholar 

  2. D.H. Kim, N.S. Lu, R. Ghaffari, J.A. Rogers, Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics. NPG Asia Materials 4, e15 (2012)

    Article  Google Scholar 

  3. J. van den Brand, M. de Kok, A. Sridhar, M. Cauwe, R. Verplancke, F. Bossuyt, et al., Flexible and stretchable electronics for wearable healthcare, in Proceedings of the 2014 44th European Solid-State Device Research Conference (Essderc, 2014), pp. 206–209

    Google Scholar 

  4. D.H. Kim, N.S. Lu, R. Ma, Y.S. Kim, R.H. Kim, S.D. Wang et al., Epidermal electronics. Science 333, 838–843 (2011)

    Article  Google Scholar 

  5. Z.G. Suo, Mechanics of stretchable electronics and soft machines. MRS Bull. 37, 218–225 (2012)

    Article  Google Scholar 

  6. N. Lu, S. Yang, Mechanics for stretchable sensors. Curr. Opin. Solid State Mater. Sci. in press (2015)

    Google Scholar 

  7. J. Song, Mechanics of stretchable electronics. Curr. Opin. Solid State Mater. Sci. 19, 160–170 (2015)

    Article  Google Scholar 

  8. D.H. Kim, N.S. Lu, Y.G. Huang, J.A. Rogers, Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bull. 37, 226–235 (2012)

    Article  Google Scholar 

  9. W.-H. Yeo, Y.-S. Kim, J. Lee, A. Ameen, L. Shi, M. Li et al., Multifunctional electronics: multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 25, 2772 (2013)

    Article  Google Scholar 

  10. J.S. Lee, J. Heo, W.K. Lee, Y.G. Lim, Y.H. Kim, K.S. Park, Flexible capacitive electrodes for minimizing motion artifacts in ambulatory electrocardiograms. Sensors 14, 14732–14743 (2014)

    Article  Google Scholar 

  11. J.W. Jeong, M.K. Kim, H.Y. Cheng, W.H. Yeo, X. Huang, Y.H. Liu et al., Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv. Healthc. Mater. 3, 642–648 (2014)

    Article  Google Scholar 

  12. J.W. Jeong, W.H. Yeo, A. Akhtar, J.J.S. Norton, Y.J. Kwack, S. Li et al., Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6846 (2013)

    Article  Google Scholar 

  13. X. Huang, W.H. Yeo, Y. Liu, J.A. Rogers, Epidermal differential impedance sensor for conformal skin hydration monitoring. Biointerphases 7, 52 (2012)

    Article  Google Scholar 

  14. X. Huang, H. Cheng, K. Chen, Y. Zhang, Y. Zhang, Y. Liu et al., Epidermal impedance sensing sheets for precision hydration assessment and spatial mapping. IEEE Trans. Biomed. Eng. 60, 2848–2857 (2013)

    Article  Google Scholar 

  15. X. Huang, Y.H. Liu, H.Y. Cheng, W.J. Shin, J.A. Fan, Z.J. Liu et al., Materials and designs for wireless epidermal sensors of hydration and strain. Adv. Funct. Mater. 24, 3846–3854 (2014)

    Article  Google Scholar 

  16. R.C. Webb, A.P. Bonifas, A. Behnaz, Y.H. Zhang, K.J. Yu, H.Y. Cheng et al., Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12, 938–944 (2013)

    Article  Google Scholar 

  17. M.K. Choi, O.K. Park, C. Choi, S. Qiao, R. Ghaffari, J. Kim, et al., Cephalopod-inspired miniaturized suction cups for smart medical skin. Adv. Healthc. Mater. (2015)

    Google Scholar 

  18. D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J.E. Lee et al., Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9, 397–404 (2014)

    Article  Google Scholar 

  19. J. Kim, M. Lee, H.J. Shim, R. Ghaffari, H.R. Cho, D. Son, et al., Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5 (2014)

    Google Scholar 

  20. A.J. Bandodkar, D. Molinnus, O. Mirza, T. Guinovart, J.R. Windmiller, G. Valdes-Ramirez et al., Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron. 54, 603–609 (2014)

    Article  Google Scholar 

  21. W. Jia, A.J. Bandodkar, G. Valdes-Ramirez, J.R. Windmiller, Z. Yang, J. Ramirez et al., Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85, 6553–6560 (2013)

    Article  Google Scholar 

  22. C. Dagdeviren, Y. Shi, P. Joe, R. Ghaffari, G. Balooch, K. Usgaonkar, et al., Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 14 (2015)

    Google Scholar 

  23. J. Kim, A. Banks, H. Cheng, Z. Xie, S. Xu, K.-I. Jang, et al., Epidermal electronics with advanced capabilities in near-field communication. Small (2014)

    Google Scholar 

  24. J.A. Fan, W.H. Yeo, Y.W. Su, Y. Hattori, W. Lee, S.Y. Jung, et al., Fractal design concepts for stretchable electronics. Nat. Commun. 5 (2014)

    Google Scholar 

  25. D.S. Gray, J. Tien, C.S. Chen, High-conductivity elastomeric electronics. Adv. Mater. 16, 393 (2004)

    Google Scholar 

  26. T. Li, Z.G. Suo, S.P. Lacour, S. Wagner, Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 20, 3274–3277 (2005)

    Article  Google Scholar 

  27. D. Brosteaux, F. Axisa, M. Gonzalez, J. Vanfleteren, Design and fabrication of elastic interconnections for stretchable electronic circuits. IEEE Electron Device Lett. 28, 552–554 (2007)

    Article  Google Scholar 

  28. D.H. Kim, J.Z. Song, W.M. Choi, H.S. Kim, R.H. Kim, Z.J. Liu et al., Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. U.S.A. 105, 18675–18680 (2008)

    Article  Google Scholar 

  29. Y.Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren, I. De Wolf, In situ observations on deformation behavior and stretching-induced failure of fine pitch stretchable interconnect. J. Mater. Res. 24, 3573–3582 (2009)

    Article  Google Scholar 

  30. Y.Y. Hsu, M. Gonzalez, F. Bossuyt, J. Vanfleteren, I. De Wolf, Polyimide-enhanced stretchable interconnects: design, fabrication, and characterization. IEEE Trans. Electron Devices 58, 2680–2688 (2011)

    Article  Google Scholar 

  31. D.H. Kim, N.S. Lu, R. Ghaffari, Y.S. Kim, S.P. Lee, L.Z. Xu et al., Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat. Mater. 10, 316–323 (2011)

    Article  Google Scholar 

  32. S. Xu, Y.H. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, et al., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4 (2013)

    Google Scholar 

  33. R.H. Kim, M.H. Bae, D.G. Kim, H.Y. Cheng, B.H. Kim, D.H. Kim et al., Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 11, 3881–3886 (2011)

    Article  Google Scholar 

  34. C.J. Yu, Z. Duan, P.X. Yuan, Y.H. Li, Y.W. Su, X. Zhang et al., Electronically programmable, reversible shape change in two- and three-dimensional hydrogel structures. Adv. Mater. 25, 1541–1546 (2013)

    Article  Google Scholar 

  35. T. Ma, Y. Wang, R. Tang, H. Yu, H. Jiang, Pre-patterned ZnO nanoribbons on soft substrates for stretchable energy harvesting applications. J. Appl. Phys. 113 (2013)

    Google Scholar 

  36. G. Lanzara, N. Salowitz, Z.Q. Guo, F.K. Chang, A spider-web-like highly expandable sensor network for multifunctional materials. Adv. Mater. 22, 4643–4648 (2010)

    Article  Google Scholar 

  37. M. Gonzalez, F. Axisa, F. Bossuyt, Y.Y. Hsu, B. Vandevelde, J. Vanfleteren, Design and performance of metal conductors for stretchable electronic circuits. Circuit World 35, 22–29 (2009)

    Article  Google Scholar 

  38. G. Mani, M.D. Feldman, D. Patel, C.M. Agrawal, Coronary stents: a materials perspective. Biomaterials 28, 1689–1710 (2007)

    Article  Google Scholar 

  39. T. Widlund, S. Yang, Y.-Y. Hsu, N. Lu, Stretchability and compliance of freestanding serpentine-shaped ribbons. Int. J. Solids Struct. 51, 4026–4037 (2014)

    Article  Google Scholar 

  40. S. Yang, S. Qiao, N. Lu, Elasticity solutions to freestanding, non-buckling serpentine ribbons. To be submitted (2016)

    Google Scholar 

  41. D.H. Kim, R. Ghaffari, N.S. Lu, S.D. Wang, S.P. Lee, H. Keum et al., Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Natl. Acad. Sci. U.S.A. 109, 19910–19915 (2012)

    Article  Google Scholar 

  42. Y.L. Yu, D. Sanchez, N.S. Lu, Work of adhesion/separation between soft elastomers of different mixing ratios. J. Mater. Res. 30, 2702–2712 (2015)

    Article  Google Scholar 

  43. Y.W. Su, J. Wu, Z.C. Fan, K.C. Hwang, J.Z. Song, Y.G. Huang et al., Postbuckling analysis and its application to stretchable electronics. J. Mech. Phys. Solids 60, 487–508 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Y.H. Zhang, S. Xu, H.R. Fu, J. Lee, J. Su, K.C. Hwang et al., Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 9, 8062–8070 (2013)

    Article  Google Scholar 

  45. Y. Zhang, H. Fu, Y. Su, S. Xu, H. Cheng, J.A. Fan, et al., Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater. 61, 7816–7827, (2013)

    Google Scholar 

  46. Y. Zhang, H. Fu, S. Xu, J.A. Fan, K.-C. Hwang, J. Jiang, et al., A hierarchical computational model for stretchable interconnects with fractal-inspired designs. J. Mech. Phys. Solids, 72, 115–130 (2014)

    Google Scholar 

  47. Y.Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren, I. DeWolf, The effect of pitch on deformation behavior and the stretching-induced failure of a polymer-encapsulated stretchable circuit. J. Micromech. Microeng. 20 (2010)

    Google Scholar 

  48. Y.Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren, B. Vandevelde et al., Design and analysis of a novel fine pitch and highly stretchable interconnect. Microelectron. Int. 27, 33–38 (2010)

    Article  Google Scholar 

  49. M. Gonzalez, B. Vandevelde, W. Christiaens, Y.Y. Hsu, F. Iker, F. Bossuyt et al., Design and implementation of flexible and stretchable systems. Microelectron. Reliab. 51, 1069–1076 (2011)

    Article  Google Scholar 

  50. S. Yang, B. Su, G. Bitar, N. Lu, Stretchability of indium tin oxide (ITO) serpentine thin films supported by Kapton substrates. Int. J. Fract. 190, 99–110, (2014)

    Google Scholar 

  51. S. Yang, E. Ng, N. Lu, Indium tin oxide (ito) serpentine ribbons on soft substrates stretched beyond 100%. Extreme Mech. Lett. 2, 37–45 (2015)

    Article  Google Scholar 

  52. U. Betz, M.K. Olsson, J. Marthy, M.F. Escola, F. Atamny, Thin films engineering of indium tin oxide: Large area flat panel displays application. Surf. Coat. Technol. 200, 5751–5759 (2006)

    Article  Google Scholar 

  53. H. Schmidt, H. Flugge, T. Winkler, T. Bulow, T. Riedl, W. Kowalsky, Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode. Appl. Phys. Lett. 94 (2009)

    Google Scholar 

  54. Y. Leterrier, L. Medico, F. Demarco, J.A.E. Manson, U. Betz, M.F. Escola et al., Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films 460, 156–166 (2004)

    Article  Google Scholar 

  55. N.S. Lu, X. Wang, Z. Suo, J. Vlassak, Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909 (2007)

    Google Scholar 

  56. R.M. Niu, G. Liu, C. Wang, G. Zhang, X.D. Ding, J. Sun, Thickness dependent critical strain in submicron Cu films adherent to polymer substrate. Appl. Phys. Lett. 90 (2007)

    Google Scholar 

  57. N.S. Lu, Z.G. Suo, J.J. Vlassak, The effect of film thickness on the failure strain of polymer-supported metal films. Acta Mater. 58, 1679–1687 (2010)

    Article  Google Scholar 

  58. S. Yang, Y.C. Chen, L. Nicolini, P. Pasupathy, J. Sacks, S. Becky et al., “Cut-and-paste” manufacture of multiparametric epidermal sensor systems. Adv. Mater. (2015). doi:10.1002/adma.201502386

    Google Scholar 

  59. M.D. Casper, A.Ö. Gözen, M.D. Dickey, J. Genzer, J.-P. Maria, Surface wrinkling by chemical modification of poly(dimethylsiloxane)-based networks during sputtering. Soft Matter 9, 7797 (2013)

    Article  Google Scholar 

  60. S. Choi, J. Park, W. Hyun, J. Kim, J. Kim, Y.B. Lee et al., Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy. ACS Nano 9, 6626–6633 (2015)

    Article  Google Scholar 

  61. S. Hong, H. Lee, J. Lee, J. Kwon, S. Han, Y.D. Suh et al., Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv. Mater. 27, 4744–4751 (2015)

    Article  Google Scholar 

  62. X. Huang, Y.H. Liu, K.L. Chen, W.J. Shin, C.J. Lu, G.W. Kong et al., Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 10, 3083–3090 (2014)

    Article  Google Scholar 

  63. Z.Y. Huang, W. Hong, Z. Suo, Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53, 2101–2118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  64. J. Xiao, A. Carlson, Z.J. Liu, Y. Huang, J.A. Rogers, Analytical and experimental studies of the mechanics of deformation in a solid with a wavy surface profile. J. Appl. Mech. 77, 011003 (2009)

    Article  Google Scholar 

  65. L. Wang, N. Lu, Conformability of a thin elastic membrane laminated on a soft substrate with slightly wavy surface. J. Appl. Mech. under review (2016)

    Google Scholar 

  66. S. Qiao, J.-B. Gratadour, L. Wang, N. Lu, Conformability of a thin elastic membrane laminated on a rigid substrate with corrugated surface

    Google Scholar 

  67. T.J. Wagner, D. Vella, The sensitivity of graphene “snap-through” to substrate geometry. Appl. Phys. Lett. 100, 233111 (2012)

    Article  Google Scholar 

  68. S. Scharfenberg, N. Mansukhani, C. Chialvo, R.L. Weaver, N. Mason, Observation of a snap-through instability in graphene. Appl. Phys. Lett. 100, 021910 (2012)

    Article  Google Scholar 

  69. N. Lu, D.H. Kim, Flexible and stretchable electronics paving the way for soft robotics. Soft Robotics 1, 53–62 (2013)

    Article  Google Scholar 

  70. M.A. Pacheco, C.L. Marshall, Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels 11, 2–29 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanshu Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lu, N., Yang, S., Wang, L. (2016). Stretchability, Conformability, and Low-Cost Manufacture of Epidermal Sensors. In: Rogers, J., Ghaffari, R., Kim, DH. (eds) Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28694-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28694-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28692-1

  • Online ISBN: 978-3-319-28694-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics