Skip to main content

Mechanically Compliant Neural Interfaces

  • Chapter
  • First Online:
Stretchable Bioelectronics for Medical Devices and Systems

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Neural interfaces are engineered devices that aim at replacing, restoring, and rehabilitating the injured or damaged nervous system. One of the challenges to overcome to deploy therapeutic neural interfaces as clinical treatments lies in the physical mismatch between biological tissues and artificial engineered devices. This chapter details recent development in materials science and technology focused on reducing this physical mismatch thereby opening the path for long-term biointegrated neural interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.D. Amella, A.J. Patton, P.J. Martens, N.H. Lovell, L.A. Poole-Warren, R.A. Green, Freestanding, soft bioelectronics. In: 2015 7th International IEEE/EMBS Conference on, Neural Engineering (NER), 22–24 April 2015, pp. 607–610. doi:10.1109/ner.2015.7146696

  2. J. Badia, T. Boretius, D. Andreu, C. Azevedo-Coste, T. Stieglitz, X. Navarro, Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles. J. Neural Eng. 8, 036023 (2011)

    Article  Google Scholar 

  3. T. Boretius, J. Badia, A. Pascual-Font, M. Schuettler, X. Navarro, K. Yoshida, T. Stieglitz, A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens. Bioelectron. 26, 62–69 (2010)

    Article  Google Scholar 

  4. E.S. Boyden, A history of optogenetics: the development of tools for controlling brain circuits with light. F1000 Biol. Rep. 3, 11 (2011). doi:10.3410/b3-11

  5. G. Buzsáki, C.A. Anastassiou, C. Koch, The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012). http://www.nature.com/nrn/journal/v13/n6/suppinfo/nrn3241_S1.html

    Google Scholar 

  6. A. Canales et al., Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotech. 33, 277–284 (2015). doi:10.1038/nbt.3093, http://www.nature.com/nbt/journal/v33/n3/abs/nbt.3093.html#supplementary-information

    Google Scholar 

  7. M. Carandini, D. Shimaoka, L.F. Rossi, T.K. Sato, A. Benucci, T. Knöpfel, Imaging the awake visual cortex with a genetically encoded voltage indicator. J. Neurosci. 35, 53–63 (2015). doi:10.1523/jneurosci.0594-14.2015

    Article  Google Scholar 

  8. R. Chen, G. Romero, M.G. Christiansen, A. Mohr, P. Anikeeva, Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480 (2015). doi:10.1126/science.1261821

    Article  Google Scholar 

  9. S. Cheng, E.C. Clarke, L.E. Bilston, Rheological properties of the tissues of the central nervous system: A review. Med. Eng. Phys. 30, 1318–1337 (2008). doi:10.1016/j.medengphy.2008.06.003

    Article  Google Scholar 

  10. D.J. Chew et al. A microchannel neuroprosthesis for bladder control after spinal cord injury in rat. Sci. Trans. Med. 5, 210ra155 (2013). doi:10.1126/scitranslmed.3007186

    Google Scholar 

  11. A.F. Christ et al., Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy. J. Biomech. 43, 2986–2992 (2010). doi:10.1016/j.jbiomech.2010.07.002

    Article  Google Scholar 

  12. X. Cui, J. Wiler, M. Dzaman, R.A. Altschuler, D.C. Martin, In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials 24, 777–787 (2003). doi:10.1016/S0142-9612(02)00415-5

    Article  Google Scholar 

  13. C. de Hemptinne, N.C. Swann, J.L. Ostrem, E.S. Ryapolova-Webb, M. San Luciano, N.B. Galifianakis, P.A. Starr, Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat. Neurosci. 18, 779–786 (2015) doi:10.1038/nn.3997, http://www.nature.com/neuro/journal/v18/n5/abs/nn.3997.html#supplementary-information

    Google Scholar 

  14. E. Delivopoulos, D.J. Chew, I.R. Minev, J.W. Fawcett, S.P. Lacour, Concurrent recordings of bladder afferents from multiple nerves using a microfabricated PDMS microchannel electrode array. Lab. Chip. 12, 2540–2551 (2012)

    Article  Google Scholar 

  15. M. Drack, I. Graz, T. Sekitani, T. Someya, M. Kaltenbrunner, S. Bauer, An Imperceptible Plastic Electronic Wrap. Adv. Mater. 27, 34–40 (2015). doi:10.1002/adma.201403093

    Article  Google Scholar 

  16. A. Ersen, S. Elkabes, D.S. Freedman, M. Sahin, Chronic tissue response to untethered microelectrode implants in the rat brain and spinal cord. J. Neural Eng. 12, 016019 (2015)

    Article  Google Scholar 

  17. J.A. Fan et al., Fractal design concepts for stretchable electronics. Nat. Commun. 5 (2014). doi:10.1038/ncomms4266

  18. W. Fan, L.W. Tien, C. Fujun, J.D. Berke, D.L. Kaplan, Y. Euisik, Silk-backed structural optimization of high-density flexible intracortical neural probes. J. Microelectromech. Syst. 24, 62–69 (2015). doi:10.1109/jmems.2014.2375326

    Article  Google Scholar 

  19. Y. Fang, X. Li, Y. Fang, Organic bioelectronics for neural interfaces. J. Mater. Chem. C 3, 6424–6430 (2015). doi:10.1039/c5tc00569h

    Article  Google Scholar 

  20. U. Freudenberg et al., A star-PEG–heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 30, 5049–5060 (2009) doi:http://dx.doi.org/10.1016/j.biomaterials.2009.06.002

    Google Scholar 

  21. M. Gierthmuehlen et al., Mapping of sheep sensory cortex with a novel microelectrocorticography grid. J. Comp. Neurol. 522, 3590–3608 (2014). doi:10.1002/cne.23631

    Article  Google Scholar 

  22. O. Graudejus, P. Gorrn, S. Wagner, Controlling the morphology of gold films on Poly(dimethylsiloxane). ACS Appl. Mater. Inter. 2, 1927–1933 (2010). doi:10.1021/am1002537

    Article  Google Scholar 

  23. I.M. Graz, D.P.J. Cotton, S.P. Lacour, Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Appl. Phys. Lett. 94, 071902–071903 (2009)

    Article  Google Scholar 

  24. D.E. Harrison, R. Cailliet, D.D. Harrison, S.J. Troyanovich, S.O. Harrison, A review of biomechanics of the central nervous system—Part II: Spinal cord strains from postural loads. J. Manipulative Physiol. Ther. 22, 322–332 (1999). doi:10.1016/S0161-4754(99)70065-5

    Article  Google Scholar 

  25. D.E. Harrison, R. Cailliet, D.D. Harrison, S.J. Troyanovich, S.O. Harrison, A review of biomechanics of the central nervous system—part III: Spinal cord stresses from postural loads and their neurologic effects. J. Manipulative Physiol. Ther. 22, 399–410 (1999). doi:10.1016/S0161-4754(99)70086-2

    Article  Google Scholar 

  26. C. Hassler, T. Boretius, T. Stieglitz, Polymers for neural implants. J. Polym. Sci., Part B: Polym. Phys. 49, 18–33 (2011). doi:10.1002/polb.22169

    Article  Google Scholar 

  27. S. Hirsch, D. Klatt, F. Freimann, M. Scheel, J. Braun, I. Sack, In vivo measurement of volumetric strain in the human brain induced by arterial pulsation and harmonic waves. Magn. Reson. Med. 70, 671–683 (2013). doi:10.1002/mrm.24499

    Article  Google Scholar 

  28. L.R. Hochberg et al., Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006) doi:http://www.nature.com/nature/journal/v442/n7099/suppinfo/nature04970_S1.html

  29. A. Jonsson, Z. Song, D. Nilsson, B.A. Meyerson, D.T. Simon, B. Linderoth, M. Berggren, Therapy using implanted organic bioelectronics vol 1, 4. (2015) doi:10.1126/sciadv.1500039

    Google Scholar 

  30. I. Khaled, S. Elmallah, C. Cheng, W.A. Moussa, V.K. Mushahwar, A.L. Elias, A flexible base electrode array for intraspinal microstimulation. IEEE Trans. Biomed. Eng. 60, 2904–2913 (2013). doi:10.1109/tbme.2013.2265877

    Article  Google Scholar 

  31. D. Khodagholy et al., In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013). doi:http://www.nature.com/ncomms/journal/v4/n3/suppinfo/ncomms2573_S1.html

  32. D. Khodagholy, J.N. Gelinas, T. Thesen, W. Doyle, O. Devinsky, G.G. Malliaras, G. Buzsaki, NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015). doi:10.1038/nn.3905, http://www.nature.com/neuro/journal/v18/n2/abs/nn.3905.html#supplementary-information

    Google Scholar 

  33. H. Kida et al., Focal brain cooling terminates the faster frequency components of epileptic discharges induced by penicillin G in anesthetized rats. Clin. Neurophysiol. 123, 1708–1713 (2012). doi:10.1016/j.clinph.2012.02.074

    Article  Google Scholar 

  34. D.-H. Kim, M. Abidian, D.C. Martin, Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. J. Biomed. Mater. Res. Part A 71A, 577–585 (2004). doi:10.1002/jbm.a.30124

    Article  Google Scholar 

  35. D.-H. Kim et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010) http://www.nature.com/nmat/journal/v9/n6/suppinfo/nmat2745_S1.html

    Google Scholar 

  36. D.-H. Kim, J.A. Wiler, D.J. Anderson, D.R. Kipke, D.C. Martin, Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex. Acta Biomater. 6, 57–62 (2010)

    Article  Google Scholar 

  37. T.-I. Kim et al., Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013). doi:10.1126/science.1232437

    Article  Google Scholar 

  38. C.L. Kolarcik et al., Elastomeric and soft conducting microwires for implantable neural interfaces. Soft Matter 11, 4847–4861 (2015). doi:10.1039/c5sm00174a

    Article  Google Scholar 

  39. S.P. Lacour, R. Atta, J.J. FitzGerald, M. Blamire, E. Tarte, J. Fawcett, Polyimide micro-channel arrays for peripheral nerve regenerative implants. Sens. Actuators, A 147, 456–463 (2008)

    Article  Google Scholar 

  40. S.P. Lacour, S. Wagner, Z. Huang, Z. Suo, Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404–2406 (2003)

    Article  Google Scholar 

  41. N. Li et al., Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci. Rep. 3 (2013). http://www.nature.com/srep/2013/130403/srep01604/abs/srep01604.html#supplementary-information

  42. W. Li, K.Y. Kwon, H.-M. Lee, M. Ghovanloo, A. Weber, Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics. Appl. Front. Syst. Neurosci. 9 (2015). doi:10.3389/fnsys.2015.00069

  43. J. Liu et al., Syringe-injectable electronics. Nat. Nano. 10, 629–636 (2015). doi:10.1038/nnano.2015.115, http://www.nature.com/nnano/journal/v10/n7/abs/nnano.2015.115.html#supplementary-information

    Google Scholar 

  44. C. Lu et al., Polymer fiber probes enable optical control of spinal cord and muscle function In Vivo. Adv. Funct. Mater. 24, 6594–6600 (2014). doi:10.1002/adfm.201401266

    Article  Google Scholar 

  45. T. Matsuo et al., Intrasulcal Electrocorticography in Macaque Monkeys with Minimally Invasive Neurosurgical Protocols. Front. Syst. Neurosci. 5, 34 (2011). doi:10.3389/fnsys.2011.00034

    Article  Google Scholar 

  46. I.R. Minev, P. Moshayedi, J.W. Fawcett, S.P. Lacour, Interaction of glia with a compliant, microstructured silicone surface. Acta Biomater. 9, 6936–6942 (2013). doi:10.1016/j.actbio.2013.02.048

    Article  Google Scholar 

  47. I.R. Minev et al., Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015). doi:10.1126/science.1260318

    Article  Google Scholar 

  48. P. Moshayedi, LdF Costa, A. Christ, S.P. Lacour, J. Fawcett, J. Guck, K. Franze, Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitative morphometry. J. Phys.: Condens. Matter 22, 194114–194124 (2010)

    Google Scholar 

  49. P. Moshayedi et al., The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials 35, 3919–3925 (2014). doi:10.1016/j.biomaterials.2014.01.038

    Article  Google Scholar 

  50. K.M. Musick et al., Scientific Reports—accepted for publication (2015)

    Google Scholar 

  51. P. Musienko, R. van den Brand, O. Maerzendorfer, A. Larmagnac, G. Courtine, Combinatory electrical and pharmacological neuroprosthetic interfaces to regain motor function after spinal cord injury. IEEE Trans. Biomed. Eng. 56, 2707–2711 (2009). doi:10.1109/tbme.2009.2027226

    Article  Google Scholar 

  52. R. Pashaie et al., Optogenetic brain interfaces. IEEE Rev. Biomed. Eng. 7, 3–30 (2014). doi:10.1109/rbme.2013.2294796

    Article  Google Scholar 

  53. P.R. Patel, K. Na, H. Zhang, T.D.Y. Kozai, N.A. Kotov, E. Yoon, C.A. Chestek, Insertion of linear 8.4 μ m diameter 16 channel carbon fiber electrode arrays for single unit recordings. J. Neural Eng. 12, 046009 (2015)

    Article  Google Scholar 

  54. V.S. Polikov, P.A. Tresco, W.M. Reichert, Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1–18 (2005)

    Article  Google Scholar 

  55. S. Raspopovic et al., Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Trans. Med. 6, 222ra219 (2014). doi:10.1126/scitranslmed.3006820

    Google Scholar 

  56. J. Reeder et al., Mechanically adaptive organic transistors for implantable electronics. Adv. Mater. 26, 4967–4973 (2014). doi:10.1002/adma.201400420

    Article  Google Scholar 

  57. H.J. Reitboeck, Fiber microelectrodes for electrophysiological recordings. J. Neurosci. Methods 8, 249–262 (1983). doi:10.1016/0165-0270(83)90038-9

    Article  Google Scholar 

  58. S.M. Richardson-Burns, J.L. Hendricks, D.C. Martin, Electrochemical polymerization of conducting polymers in living neural tissue. J. Neural Eng. 4, L6–L13 (2007)

    Article  Google Scholar 

  59. B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, T. Stieglitz, A MEMS-based flexible multichannel ECoG-electrode array. J. Neural Eng. 6, 036003 (2009)

    Article  Google Scholar 

  60. M. Schuettler, S. Stiess, B.V. King, G.J. Suaning, Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil. J. Neural Eng. 2, S121 (2005)

    Article  Google Scholar 

  61. D. Seo, J.M. Carmena, J.M. Rabaey, M.M. Maharbiz, E. Alon, Model validation of untethered, ultrasonic neural dust motes for cortical recording. J. Neurosci. Methods 244, 114–122 (2015). doi:10.1016/j.jneumeth.2014.07.025

    Article  Google Scholar 

  62. W. Shen et al., Extracellular matrix-based intracortical microelectrodes: Toward a microfabricated neural interface based on natural materials. Microsyst. Nanoeng. 1, (2015). doi:10.1038/micronano.2015.10 http://www.nature.com/articles/micronano201510#supplementary-information

  63. S. Spieth et al., A floating 3D silicon microprobe array for neural drug delivery compatible with electrical recording. J. Micromech. Microeng. 21, 125001 (2011)

    Article  Google Scholar 

  64. A. Srinivasan et al., Microchannel-based regenerative scaffold for chronic peripheral nerve interfacing in amputees. Biomaterials 41, 151–165 (2015). doi:10.1016/j.biomaterials.2014.11.035

    Article  Google Scholar 

  65. J. Subbaroyan, D.C. Martin, D.R. Kipke, A finite-element model of the mechanical effects of implantable microelectrodes in the cerebral cortex. J. Neural Eng. 2, 103 (2005)

    Article  Google Scholar 

  66. B. Tian et al., Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012). doi:http://www.nature.com/nmat/journal/v11/n11/abs/nmat3404.html#supplementary-information

  67. C. Towne, K.L. Montgomery, S.M. Iyer, K. Deisseroth, S.L. Delp, Optogenetic control of targeted peripheral axons in freely moving animals. PLoS ONE 8, e72691 (2013). doi:10.1371/journal.pone.0072691

    Article  Google Scholar 

  68. J.J. VanDersarl, A. Mercanzini, P. Renaud, Integration of 2D and 3D thin film glassy carbon electrode arrays for electrochemical dopamine sensing in flexible neuroelectronic implants. Adv. Funct. Mater. 25, 78–84 (2015). doi:10.1002/adfm.201402934

    Article  Google Scholar 

  69. M. Wagshul, P. Eide, J. Madsen, The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 8, 1–23 (2011). doi:10.1186/2045-8118-8-5

    Article  Google Scholar 

  70. T. Ware, D. Simon, D.E. Arreaga-Salas, J. Reeder, R. Rennaker, E.W. Keefer, W. Voit, Fabrication of responsive, softening neural interfaces. Adv. Funct. Mat. 22, 3470–3479 (2012). doi:10.1002/adfm.201200200

    Article  Google Scholar 

  71. T. Ware et al., Three-dimensional flexible electronics enabled by shape memory polymer substrates for responsive neural interfaces. Macromol. Mater. Eng. 297, 1193–1202 (2012). doi:10.1002/mame.201200241

    Article  Google Scholar 

  72. A. Williamson et al., Localized neuron stimulation with organic electrochemical transistors on delaminating depth probes. Adv. Mater. (2015). doi:10.1002/adma.201500218

    Google Scholar 

  73. S. Xu et al., Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Sci. 347, 154–159 (2015). doi:10.1126/science.1260960

    Google Scholar 

  74. S.-S. Yoo et al., Focused ultrasound modulates region-specific brain activity. NeuroImage 56, 1267–1275 (2011). doi:10.1016/j.neuroimage.2011.02.058

    Article  Google Scholar 

  75. M. Zhao, R. Alleva, H. Ma, A.G.S. Daniel, T.H. Schwartz, Optogenetic tools for modulating and probing the epileptic network. Epilepsy Res. (2015). doi:10.1016/j.eplepsyres.2015.06.010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie P. Lacour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Minev, I.R., Lacour, S.P. (2016). Mechanically Compliant Neural Interfaces. In: Rogers, J., Ghaffari, R., Kim, DH. (eds) Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28694-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28694-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28692-1

  • Online ISBN: 978-3-319-28694-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics