Skip to main content

Laser-Enabled Fabrication Technologies for Low-Cost Flexible/Conformal Cutaneous Wound Interfaces

  • Chapter
  • First Online:
Stretchable Bioelectronics for Medical Devices and Systems

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Laser-enabled fabrication methods, in particular laser surface modification of low-cost materials such as paper, is an attractive technology for fabrication of flexible sensors and microsystems. Such devices are uniquely suited for cutaneous wound interfaces in which one has to sense multiple parameters and deliver drugs using a disposable low-cost platform. In this chapter, we discuss our recent efforts towards using laboratory scale CO2 lasers to modify commercial hydrophobic papers (e.g., parchment paper, wax paper, palette paper, etc.) and thermoset polymers (e.g., polyimide) by controlled surface ablation. Such treatment imparts unique physical and chemical properties (hydrophilicity, extreme porosity, carbonization, etc.) to the material and allows for selective surface functionalization. Using this method, we fabricated a variety of sensors (pH, oxygen, silver, strain) and chemical delivery (oxygen) modules on low-cost commercial substrates for chronic wound management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.K. Branski, G.G. Gauglitz, D.N. Herndon, M.G. Jeschke, A review of gene and stem cell therapy in cutaneous wound healing. Burns 35(2), 171–180 (2009)

    Article  Google Scholar 

  2. A. Stojadinovic, J.W. Carlson, G.S. Schultz, T.A. Davis, E.A. Elster, Topical advances in wound care. Gynecol. Oncol. 111(2 Suppl), S70–S80 (2008)

    Article  Google Scholar 

  3. D.M. Castilla, Z.-J. Liu, O.C. Velazquez, Oxygen: implications for wound healing. Adv. Wound Care 1(6), 225–230 (2012)

    Article  Google Scholar 

  4. N.S. Greaves, S.A. Iqbal, M. Baguneid, A. Bayat, The role of skin substitutes in the management of chronic cutaneous wounds. Wound Repair Regen. 21(2), 194–210 (2013)

    Article  Google Scholar 

  5. C.K. Sen, Wound healing essentials: let there be oxygen. Wound Repair Regen. 17(1), 1–18 (2010)

    Article  Google Scholar 

  6. V. Falanga, Classifications for wound bed preparation and stimulation of chronic wounds. Wound Repair Regen. 8(5), 347–352 (2000)

    Article  Google Scholar 

  7. R.O.Y.W. Tarnuzzer, G.S. Schultz, Biochemical analysis of acute and chronic wound environments. Wound Repair Regen. 4, 321–325 (1996)

    Article  Google Scholar 

  8. A.A. Tandara, T.A. Mustoe, Oxygen in wound healing—more than a nutrient. World J. Surg. 28(3), 294–300 (2004)

    Article  Google Scholar 

  9. K. Bumpus, M.A. Maier, The ABC’s of wound care. Curr. Cardiol. Rep. 15(4), 346 (2013)

    Article  Google Scholar 

  10. J.G. Powers, L.M. Morton, T.J. Phillips, Dressings for chronic wounds. Dermatol. Ther. 26(3), 197–206 (2013)

    Article  Google Scholar 

  11. D. Queen, H. Orsted, H. Sanada, G. Sussman, A dressing history. Int. Wound J. 1(1), 59–77 (2004)

    Article  Google Scholar 

  12. D. Okan, K. Woo, E.A. Ayello, G. Sibbald, The role of moisture balance in wound healing. Adv. Skin Wound Care 20(1), 39–53 (2007)

    Article  Google Scholar 

  13. J.L. Richard, J.M. Rochet, N. Sales-aussias, Dressings for acute and chronic wounds. Arch. Dermatol. 143(10), 1297–1304 (2007)

    Google Scholar 

  14. N.F. Watson, W. Hodgkin, Wound dressings. Surgery 23(2), 52–55 (2005)

    Google Scholar 

  15. G.S. Schultz, R.G. Sibbald, V. Falanga, E.A. Ayello, C. Dowsett, K. Harding, M. Romanelli, M.C. Stacey, L. Teot, W. Vanscheidt, Wound bed preparation: a systematic approach to wound management. Wound Repair Regen. 11, 1–28 (2003)

    Article  Google Scholar 

  16. C.L. Hess, M.A. Howard, C.E. Attinger, A review of mechanical adjuncts in wound healing: hydrotherapy, ultrasound, negative pressure therapy, hyperbaric oxygen, and electrostimulation. Ann. Plast. Surg. 51(2), 210–218 (2003)

    Article  Google Scholar 

  17. A. Sood, M.S. Granick, N.L. Tomaselli, Wound dressings and comparative effectiveness data. Adv. Wound Care 00(00), 130716103126002 (2013)

    Google Scholar 

  18. Z. Aziz, S.F. Abu, N.J. Chong, A systematic review of silver-containing dressings and topical silver agents (used with dressings) for burn wounds. Burns 38(3), 307–318 (2012)

    Article  Google Scholar 

  19. S.M. O’Meara, N.A. Cullum, M. Majid, T.A. Sheldon, Systematic review of antimicrobial agents used for chronic wounds. Br. J. Surg. 88(1), 4–21 (2001)

    Article  Google Scholar 

  20. P. Boisseau, B. Loubaton, Nanomedicine, nanotechnology in medicine. C. R. Phys. 12(7), 620–636 (2011)

    Article  Google Scholar 

  21. M. Ochoa, C. Mousoulis, B. Ziaie, Polymeric microdevices for transdermal and subcutaneous drug delivery. Adv. Drug Deliv. Rev. 64(14), 1603–1616 (2012)

    Article  Google Scholar 

  22. N. Mehmood, A. Hariz, R. Fitridge, N.H. Voelcker, Applications of modern sensors and wireless technology in effective wound management. J. Biomed. Mater. Res. B. Appl. Biomater. 1–11, 2013

    Google Scholar 

  23. T.R. Dargaville, B.L. Farrugia, J.A. Broadbent, S. Pace, Z. Upton, N.H. Voelcker, Sensors and imaging for wound healing: a review. Biosens. Bioelectron. 41, 30–42 (2013)

    Article  Google Scholar 

  24. B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40(1), 395–414 (2010)

    Article  Google Scholar 

  25. S. Hengsbach, A.D. Lantada, Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies. Biomed. Microdevices 16(4), 617–627 (2014)

    Article  Google Scholar 

  26. D. Queen, J.H. Evans, J.D. Gaylor, J.M. Courtney, W.H. Reid, An in vitro assessment of wound dressing conformability. Biomaterials 8(5), 372–376 (1987)

    Article  Google Scholar 

  27. T.E. Wright, W.G. Payne, F. Ko, D. Ladizinsky, N. Bowlby, R. Neeley, B. Mannari, M.C. Robson, The effects of an oxygen-generating dressing on tissue infection and wound healing. J. Appl. Res. 3(4), 363–370 (2003)

    Google Scholar 

  28. D.W. Brett, A review of moisture-control dressings in wound care. J. Wound Ostomy Cont. Nurs. 33(6 Suppl), S3–S8 (2006)

    Article  Google Scholar 

  29. S.-F. Lo, M. Hayter, C.-J. Chang, W.-Y. Hu, L.-L. Lee, A systematic review of silver-releasing dressings in the management of infected chronic wounds. J. Clin. Nurs. 17(15), 1973–1985 (2008)

    Article  Google Scholar 

  30. G. Chaby, P. Senet, M. Vaneau, P. Martel, J.-C. Guillaume, S. Meaume, L. Téot, C. Debure, A. Dompmartin, H. Bachelet, H. Carsin, V. Matz, J.L. Richard, J.M. Rochet, N. Sales-Aussias, A. Zagnoli, C. Denis, B. Guillot, O. Chosidow, Dressings for acute and chronic wounds: a systematic review. Arch. Dermatol. 143(10), 1297–1304 (2007)

    Article  Google Scholar 

  31. S.L. Percival, S. McCarty, J.A. Hunt, E.J. Woods, The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen. 22(2), 174–186 (2014)

    Article  Google Scholar 

  32. G. Gethin, The significance of surface pH in chronic wounds. Wounds UK 3(3), 52–55 (2007)

    Google Scholar 

  33. S. Schreml, R.M. Szeimies, L. Prantl, S. Karrer, M. Landthaler, P. Babilas, Oxygen in acute and chronic wound healing. Br. J. Dermatol. 163(2), 257–268 (2010)

    Article  Google Scholar 

  34. E. Kannatey-Asibu, Principles of Laser Materials Processing (Wiley, New York, 2009)

    Book  Google Scholar 

  35. W. Steen, I. Mazumder, K.G. Watkins, Laser Material Processing, 4th edn. (Springer, New York, 2010)

    Book  Google Scholar 

  36. S. Mueller, B. Kruck, P. Baudisch, LaserOrigami: laser-cutting 3D objects, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2013, pp. 2585–2592

    Google Scholar 

  37. A. Toossi, M. Daneshmand, D. Sameoto, A low-cost rapid prototyping method for metal electrode fabrication using a CO2 laser cutter. J. Micromech. Microeng. 23(4), 047001 (2013)

    Article  Google Scholar 

  38. J. Yuan, J. Chen, C. He, Research of micro removing copper foil of FCCL assisted with laser, in 2011 IEEE International Conference on Mechatronics and Automation, 2011, pp. 749–754

    Google Scholar 

  39. D. Waugh, J.B. Griffiths, J.R. Lawrence, C. Dowding, Lasers in Surface Engineering, Surface Engineering Series (ASM International, Materials Park, 1998)

    Google Scholar 

  40. N.B. Dahotre, S.P. Harimkar, Laser Fabrication and Machining of Materials (Springer, Heidelberg, 2007)

    Google Scholar 

  41. W. Steen, Laser Materials Processing (Springer, London, 1991)

    Book  Google Scholar 

  42. D. Bäuerle, Laser Processing and Chemistry (Springer, Heidelberg, 2000)

    Book  Google Scholar 

  43. C. Hallgren, H. Reimers, D. Chakarov, J. Gold, A. Wennerberg, An in vivo study of bone response to implants topographically modified by laser micromachining. Biomaterials 24(5), 701–710 (2003)

    Article  Google Scholar 

  44. M. Psarski, J. Marczak, J. Grobelny, G. Celichowski, Superhydrophobic surface by replication of laser micromachined pattern in epoxy/alumina nanoparticle composite. J. Nanomater. 2014, 41 (2014)

    Article  Google Scholar 

  45. H. Klank, J.P. Kutter, O. Geschke, CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2(4), 242 (2002)

    Article  Google Scholar 

  46. J. Lawrence, L. Li, Laser Modification of the Wettability Characteristics of Engineering Materials (Professional Engineering, London, 2001)

    Google Scholar 

  47. G. Chitnis, Z. Ding, C. Chang, C.A. Savran, B. Ziaie, Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11(6), 1161–1165 (2011)

    Article  Google Scholar 

  48. A.K. Yetisen, M.S. Akram, C.R. Lowe, Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12), 2210–2251 (2013)

    Article  Google Scholar 

  49. A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides, Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. Engl. 46(8), 1318–1320 (2007)

    Article  Google Scholar 

  50. G. Chitnis, T. Tan, B. Ziaie, Laser-assisted fabrication of batteries on wax paper. J. Micromech. Microeng. 23(11), 114016 (2013)

    Article  Google Scholar 

  51. G. Chitnis, B. Ziaie, Waterproof active paper via laser surface micropatterning of magnetic nanoparticles. ACS Appl. Mater. Interfaces 4(9), 4435–4439 (2012)

    Article  Google Scholar 

  52. L.S. Nair, C.T. Laurencin, Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv. Biochem. Eng. Biotechnol. 102, 47–90 (2006)

    Google Scholar 

  53. P.B. Maurus, C.C. Kaeding, Bioabsorbable implant material review. Oper. Tech. Sports Med. 12(3), 158–160 (2004)

    Article  Google Scholar 

  54. R. Rahimi, G. Chitnis, P. Mostafalu, M. Ochoa, S. Sonkusale, B. Ziaie, A low-cost oxygen sensor on paper for monitoring wound oxygenation, in The 7th International Conference on Microtechnologies in Medicine and Biology, 2013

    Google Scholar 

  55. A.W. Martinez, S.T. Phillips, Z. Nie, C.-M. Cheng, E. Carrilho, B.J. Wiley, G.M. Whitesides, Programmable diagnostic devices made from paper and tape. Lab Chip 10(19), 2499–2504 (2010)

    Article  Google Scholar 

  56. C. Rivet, H. Lee, A. Hirsch, S. Hamilton, H. Lu, Microfluidics for medical diagnostics and biosensors. Chem. Eng. Sci. 66(7), 1490–1507 (2011)

    Article  Google Scholar 

  57. D. Nilsson, An all-organic sensor–transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper. Sens. Actuators B Chem. 86, 193–197 (2002)

    Article  Google Scholar 

  58. P. Spicar-Mihalic, B. Toley, J. Houghtaling, T. Liang, P. Yager, E. Fu, CO2 laser cutting and ablative etching for the fabrication of paper-based devices. J. Micromech. Microeng. 23(6), 067003 (2013)

    Article  Google Scholar 

  59. W. Karlos, D.P. De Jesus, A. Fracassi, C. Lucio, W.K.T. Coltro, D.P. de Jesus, J.A.F. da Silva, C.L. do Lago, E. Carrilho, Toner and paper-based fabrication techniques for microfluidic applications. Electrophoresis 31(15), 2487–2498 (2010)

    Article  Google Scholar 

  60. A. Russo, B.Y. Ahn, J.J. Adams, E.B. Duoss, J.T. Bernhard, J.A. Lewis, Pen-on-paper flexible electronics. Adv. Mater. 23(30), 3426–3430 (2011)

    Article  Google Scholar 

  61. R.H. Müller, D.L. Clegg, Automatic paper chromatography. Anal. Chem. 21(9), 1123–1125 (1949)

    Article  Google Scholar 

  62. M. Ochoa, R. Rahimi, T.L. Huang, N. Alemdar, A. Khademhosseini, M.R. Dokmeci, B. Ziaie, A paper-based oxygen generating platform with spatially defined catalytic regions. Sens. Actuators B Chem. 198, 472–478 (2014)

    Article  Google Scholar 

  63. R. Rahimi, M. Ochoa, X. Zhao, M.R. Dokmeci, A. Khademhosseini, B. Ziaie, A flexible ph sensor array on paper using laser pattern definition and self-aligned laminated encapsulation, in Hilton Head 2014: A Solid-State Sensors, Actuators and Microsystems Workshop, 2014

    Google Scholar 

  64. T.H. Nguyen, A. Fraiwan, S. Choi, Paper-based batteries: a review. Biosens. Bioelectron. 54, 640–649 (2014)

    Article  Google Scholar 

  65. A. Qureshi, W.P. Kang, J.L. Davidson, Y. Gurbuz, Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diam. Relat. Mater. 18(12), 1401–1420 (2009)

    Article  Google Scholar 

  66. S. Park, M. Vosguerichian, Z. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5(5), 1727–1752 (2013)

    Article  Google Scholar 

  67. W.-J. Guan, Y. Li, Y.-Q. Chen, X.-B. Zhang, G.-Q. Hu, Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes. Biosens. Bioelectron. 21(3), 508–512 (2005)

    Article  Google Scholar 

  68. S.J. Leigh, R.J. Bradley, C.P. Purssell, D.R. Billson, D.A. Hutchins, A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS ONE 7(11), e49365 (2012)

    Article  Google Scholar 

  69. S. Pyo, J.-I. Lee, M.-O. Kim, T. Chung, Y. Oh, S.-C. Lim, J. Park, J. Kim, Development of a flexible three-axis tactile sensor based on screen-printed carbon nanotube-polymer composite. J. Micromech. Microeng. 24(7), 075012 (2014)

    Article  Google Scholar 

  70. J. Wang, B. Tian, V.B. Nascimento, L. Angnes, Performance of screen-printed carbon electrodes fabricated from different carbon inks. Electrochim. Acta 43, 3459–3465 (1988)

    Article  Google Scholar 

  71. K. Grennan, A.J. Killard, M.R. Smyth, Physical characterizations of a screen-printed electrode for use in an amperometric biosensor system. Electroanalysis 13(8–9), 745–750 (2001)

    Article  Google Scholar 

  72. A.J. Bandodkar, V.W.S. Hung, W. Jia, G. Valdés-Ramírez, J.R. Windmiller, A.G. Martinez, J. Ramírez, G. Chan, K. Kerman, J. Wang, Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 138(1), 123–128 (2013)

    Article  Google Scholar 

  73. R. Rahimi, M. Ochoa, W. Yu, B. Ziaie, Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl. Mater. Interfaces, 150220090153008, 2015

    Google Scholar 

  74. M.-Y. Cheng, C.-M. Tsao, Y.-Z. Lai, Y.-J. Yang, The development of a highly twistable tactile sensing array with stretchable helical electrodes. Sens. Actuators A Phys. 166(2), 226–233 (2011)

    Article  Google Scholar 

  75. J. Zhong, Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials (Basel) 7(5), 3919–3945 (2014)

    Article  Google Scholar 

  76. O.C. Jeong, S. Konishi, Three-dimensionally combined carbonized polymer sensor and heater. Sens. Actuators A Phys. 143(1), 97–105 (2008)

    Article  Google Scholar 

  77. N.E. Hebert, B. Snyder, R.L. Mccreery, W.G. Kuhr, S.A. Brazill, Performance of pyrolyzed photoresist carbon films in a microchip capillary electrophoresis device with sinusoidal voltammetric detection. Anal. Chem. 75(16), 4265–4271 (2003)

    Article  Google Scholar 

  78. M.S. Kim, B. Hsia, C. Carraro, R. Maboudian, Flexible micro-supercapacitors with high energy density from simple transfer of photoresist-derived porous carbon electrodes. Carbon N. Y. 74, 163–169 (2014)

    Article  Google Scholar 

  79. H.-S. Min, B.Y. Park, L. Taherabadi, C. Wang, Y. Yeh, R. Zaouk, M.J. Madou, B. Dunn, Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery. J. Power Sources 178(2), 795–800 (2008)

    Article  Google Scholar 

  80. K.C. Morton, C.A. Morris, M.A. Derylo, R. Thakar, L.A. Baker, Carbon electrode fabrication from pyrolyzed parylene C. Anal. Chem. 83(13), 5447–5452 (2011)

    Article  Google Scholar 

  81. T. Lippert, E. Ortelli, J. Panitz, F. Raimondi, J. Wambach, J. Wei, A. Wokaun, Imaging-XPS/ Raman investigation on the carbonization of polyimide after irradiation at 308 nm. Appl. Phys. A 69, 651–654 (1999)

    Article  Google Scholar 

  82. G. Shafeev, P. Hoffmann, Light-enhanced electroless Cu deposition on laser-treated polyimide surface. Appl. Surf. Sci. 138–139, 455–460 (1999)

    Article  Google Scholar 

  83. J.M. Ingram, M. Greb, J.A. Nicholson, A.W. Fountain, Polymeric humidity sensor based on laser carbonized polyimide substrate. Sens. Actuators B Chem. 96(1–2), 283–289 (2003)

    Article  Google Scholar 

  84. M. Inagaki, S. Harada, T. Sato, T. Nakajima, Y. Horino, K. Morita, Carbonization of polyimide film ‘Kapton’. Carbon N. Y. 27(2), 253–257 (1989)

    Article  Google Scholar 

  85. F. Raimondi, S. Abolhassani, R. Brütsch, F. Geiger, T. Lippert, J. Wambach, J. Wei, A. Wokaun, Quantification of polyimide carbonization after laser ablation. J. Appl. Phys. 88(6), 3659 (2000)

    Article  Google Scholar 

  86. M. Park, L.N. Cella, W. Chen, N.V. Myung, A. Mulchandani, Carbon nanotubes-based chemiresistive immunosensor for small molecules: detection of nitroaromatic explosives. Biosens. Bioelectron. 26(4), 1297–1301 (2010)

    Article  Google Scholar 

  87. J. Li, Y. Lu, Q.L. Ye, J. Han, M. Meyyappan, Carbon nanotube based chemical sensors for gas and vapor detection. Chem. Phys. Lett. 313(2), 91 (1999)

    Google Scholar 

  88. J.T. Muth, D.M. Vogt, R.L. Truby, Y. Mengüç, D.B. Kolesky, R.J. Wood, J.A. Lewis, Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 26, 6307–6312 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Ziaie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ochoa, M., Rahimi, R., Ziaie, B. (2016). Laser-Enabled Fabrication Technologies for Low-Cost Flexible/Conformal Cutaneous Wound Interfaces. In: Rogers, J., Ghaffari, R., Kim, DH. (eds) Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28694-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28694-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28692-1

  • Online ISBN: 978-3-319-28694-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics