Skip to main content

Liquid Metals for Soft and Stretchable Electronics

  • Chapter
  • First Online:
Stretchable Bioelectronics for Medical Devices and Systems

Part of the book series: Microsystems and Nanosystems ((MICRONANO))

Abstract

Liquid metals are the softest and most deformable class of electrical conductors . They are intrinsically stretchable and can be embedded in elastomeric or gel matrices without altering the mechanical properties of the resulting composite. These composites can maintain metallic electrical conductivity at extreme strains and can form soft, conformal contacts with surfaces. Gallium and several of its alloys, which are liquid metals at or near room temperature, offer a low toxicity alternative to mercury. These metals have negligible vapor pressure (so they do not evaporate) and low viscosity. The surface of these metals reacts rapidly with air to form a thin surface oxide ‘skin’ that allows these liquids to be patterned despite their large surface tension. For example, liquid metal can be 3D printed, molded, or injected into microchannels. This chapter summarizes the properties, patterning methods, and applications of these remarkable materials to form devices with extremely soft mechanical properties. Liquid metals may be used, for example, as conductors for hyper-elastic wires, stretchable antennas, optical structures, conformal electrodes, deformable interconnects, self-healing wires, components in microsystems, reconfigurable circuit elements, and soft circuit boards. They can also be integrated as functional components in circuits composed entirely of soft materials such as sensors, capacitors, memory devices, and diodes. Research is just beginning to explore ways to utilize these ‘softer than skin’ materials for biolectronic applications. This chapter summarizes the properties, patterning methods, and applications of liquid metals and concludes with an outlook and future challenges of these materials within this context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Suo, Mechanics of stretchable electronics and soft machines. MRS Bull. 37, 218–225 (2012)

    Article  Google Scholar 

  2. D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, J.A. Rogers, Epidermal Electronics. Science 333, 838–843 (2011)

    Google Scholar 

  3. Y. Menguc, Y.-L. Park, H. Pei, D. Vogt, P.M. Aubin, E. Winchell, L. Fluke, L. Stirling, R.J. Wood, C.J. Walsh, Wearable soft sensing suit for human gait measurement. Int. J. Robot. Res. 33, 1748–1764 (2014)

    Article  Google Scholar 

  4. R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing-from humans to humanoids. IEEE Trans. Robot. 26, 1–20 (2010)

    Article  Google Scholar 

  5. D.J. Tobin, Biochemistry of human skin—our brain on the outside. Chem. Soc. Rev. 35, 52–67 (2006)

    Article  Google Scholar 

  6. M.L. Hammock, A. Chortos, B.C.-K. Tee, J.B.-H. Tok, Z. Bao, 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013)

    Article  Google Scholar 

  7. A. Nathan, A. Ahnood, M.T. Cole, S. Lee, Y. Suzuki, P. Hiralal, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, A. Dyadyusha, S. Haque, P. Andrew, S. Hofmann, J. Moultrie, D. Chu, A.J. Flewitt, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A.J. Amaratunga, W.I. Milne, Flexible electronics: the next ubiquitous platform. Proc. IEEE 100, 1486–1517 (2012)

    Google Scholar 

  8. V.J. Lumelsky, M.S. Shur, S. Wagner, Sensitive Skin. IEEE Sens. J. 1, 41–51 (2001)

    Google Scholar 

  9. S. Wagner, S.P. Lacour, J. Jones, P.H.I. Hsu, J.C. Sturm, T. Li, Z.G. Suo, Electronic skin: architecture and components. Phys. E-Low-Dimens. Syst. Nanostructures 25, 326–334 (2004)

    Article  Google Scholar 

  10. J. Kim, M. Lee, H.J. Shim, R. Ghaffari, H.R. Cho, D. Son, Y.H. Jung, M. Soh, C. Choi, S. Jung, K. Chu, D. Jeon, S.-T. Lee, J.H. Kim, S.H. Choi, T. Hyeon, D.-H. Kim, Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, (2014)

    Google Scholar 

  11. C. Majidi, Soft robotics: a perspective—current trends and prospects for the future. Soft Robot. 1, 5–11 (2013)

    Article  Google Scholar 

  12. S. Kim, C. Laschi, B. Trimmer, Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013)

    Article  Google Scholar 

  13. S. Wagner, S. Bauer, Materials for stretchable electronics. MRS Bull. 37, 207–213 (2012)

    Article  Google Scholar 

  14. J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)

    Article  Google Scholar 

  15. D.-H. Kim, N. Lu, Y. Huang, J.A. Rogers, Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bull. 37, 226–235 (2012)

    Article  Google Scholar 

  16. T. Sekitani, T. Someya, Stretchable organic integrated circuits for large-area electronic skin surfaces. MRS Bull. 37, 236–245 (2012)

    Article  Google Scholar 

  17. J. Vanfleteren, M. Gonzalez, F. Bossuyt, Y.-Y. Hsu, T. Vervust, I. De Wolf, M. Jablonski, Printed circuit board technology inspired stretchable circuits. MRS Bull. 37, 254–260 (2012)

    Article  Google Scholar 

  18. R.L. Crabb, F.C. Treble, Thin silicon solar cells for large flexible arrays. Nature 213, 1223–1224 (1967)

    Article  Google Scholar 

  19. T.P. Brody, The birth and early childhood of active matrix—a personal memoir. J. Soc. Inf. Disp. 4, 113 (1996)

    Article  Google Scholar 

  20. D.-H. Kim, J.A. Rogers, Stretchable electronics: materials strategies and devices. Adv. Mater. 20, 4887–4892 (2008)

    Article  Google Scholar 

  21. S.D. Theiss, S. Wagner, Amorphous silicon thin-film transistors on steel foil substrates. IEEE Electron Device Lett. 17, 578–580 (1996)

    Article  Google Scholar 

  22. D. Tobjörk, R. Österbacka, Paper electronics. Adv. Mater. 23, 1935–1961 (2011)

    Article  Google Scholar 

  23. G.H. Gelinck, H.E.A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J.B.P.H. van der Putten, T.C.T. Geuns, M. Beenhakkers, J.B. Giesbers, B.-H. Huisman, E.J. Meijer, E.M. Benito, F.J. Touwslager, A.W. Marsman, B.J.E. van Rens, D.M. de Leeuw, Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 3, 106–110 (2004)

    Article  Google Scholar 

  24. J.A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V.R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic, Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl. Acad. Sci. U. S. A. 98, 4835–4840 (2001)

    Google Scholar 

  25. M. Watanabe, H. Shirai, T. Hirai, Wrinkled polypyrrole electrode for electroactive polymer actuators. J. Appl. Phys. 92, 4631–4637 (2002)

    Article  Google Scholar 

  26. D.S. Gray, J. Tien, C.S. Chen, High-conductivity elastomeric electronics. Adv. Mater. 16, 393–397 (2004)

    Article  Google Scholar 

  27. Y. Sun, W.M. Choi, H. Jiang, Y.Y. Huang, J.A. Rogers, Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 1, 201–207 (2006)

    Article  Google Scholar 

  28. D.-H. Kim, J.-H. Ahn, W.M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, J.A. Rogers, Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008)

    Article  Google Scholar 

  29. D. Brosteaux, F. Axisa, M. Gonzalez, J. Vanfleteren, Design and fabrication of elastic interconnections for stretchable electronic circuits. IEEE Electron Device Lett. 28, 552–554 (2007)

    Article  Google Scholar 

  30. D.-H. Kim, J. Song, W.M. Choi, H.-S. Kim, R.-H. Kim, Z. Liu, Y.Y. Huang, K.-C. Hwang, Y. Zhang, J.A. Rogers, Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. 105, 18675–18680 (2008)

    Article  Google Scholar 

  31. C.F. Guo, T. Sun, Q. Liu, Z. Suo, Z. Ren, Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat. Commun. 5, (2014)

    Google Scholar 

  32. Y. Zhang, S. Wang, X. Li, J.A. Fan, S. Xu, Y.M. Song, K.-J. Choi, W.-H. Yeo, W. Lee, S.N. Nazaar, B. Lu, L. Yin, K.-C. Hwang, J.A. Rogers, Y. Huang, Experimental and theoretical studies of serpentine microstructures bonded to prestrained elastomers for stretchable electronics. Adv. Funct. Mater. 24, 2028–2037 (2014)

    Article  Google Scholar 

  33. S.P. Lacour, C. Tsay, S. Wagner, An elastically stretchable TFT circuit. IEEE Electron Device Lett. 25, 792–794 (2004)

    Article  Google Scholar 

  34. S.P. Lacour, S. Wagner, Z.Y. Huang, Z. Suo, Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404–2406 (2003)

    Article  Google Scholar 

  35. S.P. Lacour, J. Jones, S. Wagner, T. Li, Z. Suo, Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93, 1459–1467 (2005)

    Google Scholar 

  36. I.R. Minev, P. Musienko, A. Hirsch, Q. Barraud, N. Wenger, E.M. Moraud, J. Gandar, M. Capogrosso, T. Milekovic, L. Asboth, R.F. Torres, N. Vachicouras, Q. Liu, N. Pavlova, S. Duis, A. Larmagnac, J. Vörös, S. Micera, Z. Suo, G. Courtine, S.P. Lacour, Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015)

    Google Scholar 

  37. S. Xu, Z. Yan, K.-I. Jang, W. Huang, H. Fu, J. Kim, F. Wei, M. Flavin, J. McCracken, R. Wang, A. Badea, Y. Liu, D. Xiao, G. Zhou, J. Lee, H.U. Chung, H. Cheng, W. Ren, A. Banks, X. Li, U. Paik, R.G. Nuzzo, Y. Huang, Y. Zhang, J.A. Rogers, Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154–159 (2015)

    Google Scholar 

  38. T. Castle, Y. Cho, X. Gong, E. Jung, D.M. Sussman, S. Yang, R.D. Kamien, Making the cut: lattice kirigami rules. Phys. Rev. Lett. 113, 245502 (2014)

    Article  Google Scholar 

  39. M.K. Blees, A.W. Barnard, P.A. Rose, S.P. Roberts, K.L. McGill, P.Y. Huang, A.R. Ruyack, J.W. Kevek, B. Kobrin, D.A. Muller, P.L. McEuen, Graphene kirigami. Nature 524, 204–207 (2015)

    Article  Google Scholar 

  40. D.M. Sussman, Y. Cho, T. Castle, X. Gong, E. Jung, S. Yang, R.D. Kamien, Algorithmic lattice kirigami: a route to pluripotent materials. Proc. Natl. Acad. Sci. U. S. A. 112, 7449–7453 (2015)

    Google Scholar 

  41. T.C. Shyu, P.F. Damasceno, P.M. Dodd, A. Lamoureux, L. Xu, M. Shlian, M. Shtein, S.C. Glotzer, N.A. Kotov, A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat. Mater. 14, 785–789 (2015)

    Article  Google Scholar 

  42. J.A. Fan, W.-H. Yeo, Y. Su, Y. Hattori, W. Lee, S.-Y. Jung, Y. Zhang, Z. Liu, H. Cheng, L. Falgout, M. Bajema, T. Coleman, D. Gregoire, R.J. Larsen, Y. Huang, J. A. Rogers, Fractal design concepts for stretchable electronics. Nat. Commun. 5, (2014)

    Google Scholar 

  43. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008)

    Article  Google Scholar 

  44. S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Metal Ion Implantation for the fabrication of stretchable electrodes on elastomers. Adv. Funct. Mater. 19, 470–478 (2009)

    Article  Google Scholar 

  45. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya, Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009)

    Article  Google Scholar 

  46. M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M.-B. Shim, S. Jeon, D.-Y. Chung, J. Bae, J. Park, U. Jeong, K. Kim, Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7, 803–809 (2012)

    Article  Google Scholar 

  47. P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K.H. Nam, D. Lee, S.S. Lee, S.H. Ko, Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326–3332 (2012)

    Article  Google Scholar 

  48. Y. Zhang, C.J. Sheehan, J. Zhai, G. Zou, H. Luo, J. Xiong, Y.T. Zhu, Q.X. Jia, Polymer-embedded carbon nanotube ribbons for stretchable conductors. Adv. Mater. 22, 3027–3031 (2010)

    Article  Google Scholar 

  49. K. Liu, Y. Sun, P. Liu, X. Lin, S. Fan, K. Jiang, Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Adv. Funct. Mater. 21, 2721–2728 (2011)

    Article  Google Scholar 

  50. H. Stoyanov, M. Kollosche, S. Risse, R. Wache, G. Kofod, Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv. Mater. 25, 578–583 (2013)

    Article  Google Scholar 

  51. Y. Kim, J. Zhu, B. Yeom, M. Di Prima, X. Su, J.-G. Kim, S.J. Yoo, C. Uher, N.A. Kotov, Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59-U77 (2013)

    Article  Google Scholar 

  52. N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani, T. Someya, Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015)

    Article  Google Scholar 

  53. S. Savagatrup, A.D. Printz, T.F. O’Connor, A.V. Zaretski, D.J. Lipomi, molecularly stretchable electronics. Chem. Mater. 26, 3028–3041 (2014)

    Article  Google Scholar 

  54. H.-J. Koo, O.D. Velev, Ionic current devices—recent progress in the merging of electronic, microfluidic, and biomimetic structures. Biomicrofluidics 7, 031501 (2013)

    Article  Google Scholar 

  55. H. Chun, T.D. Chung, Iontronics. Annu. Rev. Anal. Chem. 88, 441–462 (2015)

    Article  Google Scholar 

  56. I.D. Joshipura, H.R. Ayers, C. Majidi, M.D. Dickey, Methods to pattern liquid metals. J. Mater. Chem. C3, 3834–3841 (2015)

    Google Scholar 

  57. M.D. Dickey, Emerging applications of liquid metals featuring surface oxides. ACS Appl. Mater. Interfaces 6, 18369–18379 (2014)

    Article  Google Scholar 

  58. E.M. Ahmed, Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6, 105–121 (2015)

    Article  Google Scholar 

  59. O.J. Cayre, S.T. Chang, O.D. Velev, Polyelectrolyte diode: nonlinear current response of a junction between aqueous ionic gels. J. Am. Chem. Soc. 129, 10801–10806 (2007)

    Article  Google Scholar 

  60. J.-H. Han, K.B. Kim, H.C. Kim, T. D. Chung, Ionic circuits based on polyelectrolyte diodes on a microchip. Angew. Chem.Int. Ed. 48, 3830–3833 (2009)

    Google Scholar 

  61. H.-J. Koo, S.T. Chang, J.M. Slocik, R.R. Naik, O.D. Velev, Aqueous soft matter based photovoltaic devices. J. Mater. Chem. 21, 72–79 (2011)

    Article  Google Scholar 

  62. C. Keplinger, J.-Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides, Z. Suo, Stretchable, transparent, ionic conductors. Science 341, 984–987 (2013)

    Article  Google Scholar 

  63. J.-Y. Sun, C. Keplinger, G.M. Whitesides, Z. Suo, Ionic skin. Adv. Mater. 26, 7608–7614 (2014)

    Article  Google Scholar 

  64. J. Le Bideau, L. Viau, A. Vioux, Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 40, 907–925 (2011)

    Article  Google Scholar 

  65. B. Chen, J.J. Lu, C.H. Yang, J.H. Yang, J. Zhou, Y.M. Chen, Z. Suo, Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Appl. Mater. Interfaces 6, 7840–7845 (2014)

    Article  Google Scholar 

  66. S. Saricilar, D. Antiohos, K. Shu, P.G. Whitten, K. Wagner, C. Wang, G.G. Wallace, High strain stretchable solid electrolytes. Electrochem. Commun. 32, 47–50 (2013)

    Article  Google Scholar 

  67. M. Kaltenbrunner, G. Kettlgruber, C. Siket, R. Schwoediauer, S. Bauer, Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics. Adv. Mater. 22, 2065–2067 (2010)

    Article  Google Scholar 

  68. G. Kettlgruber, M. Kaltenbrunner, C.M. Siket, R. Moser, I.M. Graz, R. Schwödiauer, S. Bauer, Intrinsically stretchable and rechargeable batteries for self-powered stretchable electronics. J. Mater. Chem. A1, 5505 (2013)

    Article  Google Scholar 

  69. K. Suganuma, Introduction to Printed Electronics, vol. 74 (Springer, New York, 2014)

    Google Scholar 

  70. Applications of Organic and Printed Electronics (Springer, US, 2013)

    Google Scholar 

  71. D.J. Lipomi, M. Vosgueritchian, B.C.-K. Tee, S.L. Hellstrom, J.A. Lee, C.H. Fox, Z. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011)

    Article  Google Scholar 

  72. S. Rosset, H.R. Shea, Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. Mater. Sci. Process. 110, 281–307 (2013)

    Article  Google Scholar 

  73. S. Zhu, J.-H. So, R. Mays, S. Desai, W.R. Barnes, B. Pourdeyhimi, M.D. Dickey, ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv. Funct. Mater. 23, 2308–2314 (2013)

    Article  Google Scholar 

  74. W.M. Haynes, CRC Handbook of Chemistry and Physics, (CRC Press/Taylor and Francis, Boca Raton, 2011)

    Google Scholar 

  75. T.W. Clarkson, L. Magos, The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36, 609–662 (2006)

    Article  Google Scholar 

  76. R.E. Holmlin, R. Haag, M.L. Chabinyc, R.F. Ismagilov, A.E. Cohen, A. Terfort, M.A. Rampi, G.M. Whitesides, Electron transport through thin organic films in metal—insulator—metal junctions based on self-assembled monolayers. J. Am. Chem. Soc. 123, 5075–5085 (2001)

    Article  Google Scholar 

  77. D.C. Grahame, Measurement of the capacity of the electrical double layer at a mercury electrode. J. Am. Chem. Soc. 71, 2975–2978 (1949)

    Article  Google Scholar 

  78. T.S. Kasirga, Y.N. Ertas, M. Bayindir, Microfluidics for reconfigurable electromagnetic metamaterials. Appl. Phys. Lett. 95, 214102 (2009)

    Article  Google Scholar 

  79. H.J. Lee, C.-J. Kim, Surface-tension-driven microactuation based on continuous electrowetting. J. Microelectromechanical Syst. 9, 171–180 (2000)

    Article  Google Scholar 

  80. K.-S. Yun, I.-J. Cho, J.-U. Bu, C.-J. Kim, E. Yoon, A surface-tension driven micropump for low-voltage and low-power operations. J. Microelectromechanical Syst. 11, 454–461 (2002)

    Article  Google Scholar 

  81. T.L. Ziegler, K.K. Divine, P.L. Goering, in Elements and their compounds in the environment, ed. by E. Merian, M. Anke, M. Ihnat, M. Stoeppler (Wiley-VCH Verlag GmbH, 2004), pp. 775–786

    Google Scholar 

  82. C. Bonchi, F. Imperi, F. Minandri, P. Visca, E. Frangipani, Repurposing of gallium-based drugs for antibacterial therapy. BioFactors 40, 303–312 (2014)

    Google Scholar 

  83. M. Frezza, C.N. Verani, D. Chen, Q.P. Dou, The therapeutic potential of gallium-based complexes in anti-tumor drug design. Lett. Drug Des. Discov. 4, 311–317 (2007)

    Article  Google Scholar 

  84. L.R. Bernstein, Mechanisms of therapeutic activity for gallium. Pharmacol. Rev. 50, 665–682 (1998)

    Google Scholar 

  85. H.J. Caul, D.L. Smith, Alloys of gallium with powdered metals as possible replacement for dental amalgam. J. Am. Dent. Assoc. 193953, 315–324 (1956)

    Google Scholar 

  86. N. Hallfors, A. Khan, M.D. Dickey, A.M. Taylor, Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform. Lab Chip 13, 522–526 (2013)

    Article  Google Scholar 

  87. J.E. Chandler, H.H. Messer, G. Ellender, Cytotoxicity of gallium and indium ions compared with mercuric ion. J. Dent. Res. 73, 1554–1559 (1994)

    Google Scholar 

  88. C.S. Ivanoff, A.E. Ivanoff, T.L. Hottel, Gallium poisoning: a rare case report. Food Chem. Toxicol. 50, 212–215 (2012)

    Article  Google Scholar 

  89. J.L. Domingo, J. Corbella, A review of the health-hazards from gallium exposure. Trace Elem. Med. 8, 56–64 (1991)

    Google Scholar 

  90. F. Geiger, C.A. Busse, R.I. Loehrke, The vapor pressure of indium, silver, gallium, copper, tin, and gold between 0.1 and 3.0 bar. Int. J. Thermophys. 8, 425–436 (1987)

    Article  Google Scholar 

  91. Gray, F., Kramer, D. A., Bliss, J. D. & Updated by Staff. in Kirk-Othmer Encyclopedia of Chemical Technology (John Wiley & Sons, Inc., 2000). http://onlinelibrary.wiley.com/doi/10.1002/0471238961.0701121219010215.a01.pub3/abstract

  92. R.R. Moskalyk, Gallium: the backbone of the electronics industry. Miner. Eng. 16, 921–929 (2003)

    Article  Google Scholar 

  93. L.J. Briggs, Gallium: thermal conductivity; supercooling; negative pressure. J. Chem. Phys. 26, 784–786 (1957)

    Article  Google Scholar 

  94. A. Burdakin, B. Khlevnoy, M. Samoylov, V. Sapritsky, S. Ogarev, A. Panfilov, G. Bingham, V. Privalsky, J. Tansock, T. Humpherys, Melting points of gallium and of binary eutectics with gallium realized in small cells. Metrologia 45, 75 (2008)

    Article  Google Scholar 

  95. R.C. Chiechi, E.A. Weiss, M.D. Dickey, G. M. Whitesides, Eutectic Gallium–Indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem. Int. Ed. 47, 142–144 (2008)

    Google Scholar 

  96. M.D. Dickey, R.C. Chiechi, R.J. Larsen, E.A. Weiss, D.A. Weitz, G.M. Whitesides, Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18, 1097–1104 (2008)

    Article  Google Scholar 

  97. N.B. Morley, J. Burris, L.C. Cadwallader, M.D. Nornberg, GaInSn usage in the research laboratory. Rev. Sci. Instrum. 79, 056107 (2008)

    Article  Google Scholar 

  98. N.F. Mott, The resistance of liquid metals. Proc. R. Soc. Lond. Ser. A146, 465–472 (1934)

    Article  Google Scholar 

  99. D. Zrnic, D.S. Swatik, Resistivity and surface tension of the eutectic alloy of gallium and indium. J. Common Met. 18, 67–68 (1969)

    Article  Google Scholar 

  100. M.R. Hopkins, T.C. Toye, The determination of the viscosity of molten metals. Proc. Phys. Soc. Sect. B63, 773–782 (1950)

    Article  Google Scholar 

  101. K.E. Spells, Determination of the viscosity of liquid gallium over an extended range of temperature. Proc. Phys. Soc. Lond. 48, 299–311 (1936)

    Article  Google Scholar 

  102. S.C. Hardy, The surface tension of liquid gallium. J. Cryst. Growth 71, 602–606 (1985)

    Article  Google Scholar 

  103. M.J. Duggin, The thermal conductivity of liquid gallium. Phys. Lett. A 29, 470–471 (1969)

    Article  Google Scholar 

  104. L. Zhang, G. Shi, Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J. Phys. Chem. C 115, 17206–17212 (2011)

    Article  Google Scholar 

  105. S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, Physical properties of ionic liquids: database and evaluation. J. Phys. Chem. Ref. Data 35, 1475–1517 (2006)

    Article  Google Scholar 

  106. H.E. Sostman, Melting point of gallium as a temperature calibration standard. Rev. Sci. Instrum. 48, 127–130 (1977)

    Article  Google Scholar 

  107. K.E. Spells, The determination of the viscosity of liquid gallium over an extended nrange of temperature. Proc. Phys. Soc. 48, 299 (1936)

    Article  Google Scholar 

  108. C. Dodd, The electrical resistance of liquid gallium in the neighbourhood of its melting point. Proc. Phys. Soc. Sect. B63, 662–664 (1950)

    Article  Google Scholar 

  109. Y. Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth, R. Novakovic, Thermophysical properties of the Liquid Ga–In–Sn eutectic Alloy. J. Chem. Eng. Data 59, 757–763 (2014)

    Article  Google Scholar 

  110. S. Yu, M. Kaviany, Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles. J. Chem. Phys. 140, 064303 (2014)

    Article  Google Scholar 

  111. W.H. Hoather, The density and coefficient of expansion of liquid gallium over a wide range of temperature. Proc. Phys. Soc. 48, 699 (1936)

    Article  Google Scholar 

  112. Y.L. Wang, S.J. Lin, Spatial and temporal scaling of oxide cluster aggregation on a liquid-gallium surface. Phys. Rev. B: Condens. Matter 53, 6152–6157 (1996)

    Article  Google Scholar 

  113. A. Plech, U. Klemradt, H. Metzger, J. Peisl, In situ x-ray reflectivity study of the oxidation kinetics of liquid gallium and the liquid alloy. J. Phys.: Condens. Matter 10, 971 (1998)

    Google Scholar 

  114. Y.L. Wang, Y.Y. Doong, T.S. Chen, J.S. Haung, Oxidation of liquid gallium surface—nonequilibrium growth-kinetics in in 2+1 dimensions. J. Vac. Sci. Technol. Vac. Surf. Films 12, 2081–2086 (1994)

    Article  Google Scholar 

  115. A.J. Downs, Chemistry of Aluminium, Gallium, Indium, and Thallium, 1st edn. (Blackie Academic & Professional, 1993)

    Google Scholar 

  116. I.A. Sheka, I.S. Chaus, T. T. Mitiureva, The Chemistry of Gallium (Elsevier, 1966)

    Google Scholar 

  117. T. Liu, P. Sen, C.-J. Kim, Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices. J. Microelectromechanical Syst. 21, 443–450 (2012)

    Article  Google Scholar 

  118. E.H. Kawamoto, S. Lee, P.S. Pershan, M. Deutsch, N. Maskil, B.M. Ocko, X-ray reflectivity study of the surface of liquid gallium. Phys. Rev. B Condens. Matter Mater. Phys. 47, 6847–6850 (1993)

    Article  Google Scholar 

  119. F. Scharmann, G. Cherkashinin, V. Breternitz, C. Knedlik, G. Hartung, T. Weber, J.A. Schaefer, Viscosity effect on GaInSn studied by XPS. Surf. Interface Anal. 36, 981–985 (2004)

    Article  Google Scholar 

  120. J.M. Chabala, Oxide-growth kinetics and fractal-like patterning across liquid gallium surfaces. Phys. Rev. B 46, 11346–11357 (1992)

    Article  Google Scholar 

  121. D. Tonova, M. Patrini, P. Tognini, A. Stella, P. Cheyssac, R. Kofman, Ellipsometric study of optical properties of liquid Ga nanoparticles. J. Phys. Condens. Matter 11, 2211 (1999)

    Article  Google Scholar 

  122. M.W. Knight, T. Coenen, Y. Yang, B.J.M. Brenny, M. Losurdo, A.S. Brown, H.O. Everitt, A. Polman, Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles. ACS Nano 9, 2049–2060 (2015)

    Article  Google Scholar 

  123. M. Yarema, M. Wörle, M.D. Rossell, R. Erni, R. Caputo, L. Protesescu, K.V. Kravchyk, D.N. Dirin, K. Lienau, F. von Rohr, A. Schilling, M. Nachtegaal, M.V. Kovalenko, Monodisperse colloidal gallium nanoparticles: synthesis, low temperature crystallization, surface plasmon resonance and li-ion storage. J. Am. Chem. Soc. 136, 12422–12430 (2014)

    Article  Google Scholar 

  124. M.R. Khan, C. Trlica, J.-H. So, M. Valeri, M.D. Dickey, Influence of water on the interfacial behavior of gallium liquid metal alloys. ACS Appl. Mater. Interfaces 6, 22467–22473 (2014)

    Article  Google Scholar 

  125. W.F. Reus, M.M. Thuo, N.D. Shapiro, C.A. Nijhuis, G.M. Whitesides, The SAM, not the electrodes, dominates charge transport in metal-monolayer//Ga2O3/gallium-indium eutectic junctions. ACS Nano 6, 4806–4822 (2012)

    Article  Google Scholar 

  126. M.J. Regan, H. Tostmann, P.S. Pershan, O.M. Magnussen, E. DiMasi, B.M. Ocko, M. Deutsch, X-ray study of the oxidation of liquid-gallium surfaces. Phys. Rev. B 55, 10786–10790 (1997)

    Article  Google Scholar 

  127. C. Ladd, J.-H. So, J. Muth, M.D. Dickey, 3D printing of free standing liquid metal microstructures. Adv. Mater. 25, 5081–5085 (2013)

    Article  Google Scholar 

  128. R.C. Chiechi, E.A. Weiss, M.D. Dickey, G.M. Whitesides, Eutectic gallium-indium (EGaIn): a moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem. 120, 148–150 (2008)

    Article  Google Scholar 

  129. R.J. Larsen, M.D. Dickey, G.M. Whitesides, D.A. Weitz, Viscoelastic properties of oxide-coated liquid metals. J. Rheol. 53, 1305–1326 (2009)

    Article  Google Scholar 

  130. S.H. Elahi, H. Abdi, H.R. Shahverdi, A new method for investigating oxidation behavior of liquid metals. Rev. Sci. Instrum. 85, 015115 (2014)

    Article  Google Scholar 

  131. M. Jeyakumar, M. Hamed, S. Shankar, Rheology of liquid metals and alloys. J. Non-Newton. Fluid Mech. 166, 831–838 (2011)

    Article  MATH  Google Scholar 

  132. Q. Xu, N. Oudalov, Q. Guo, H.M. Jaeger, E. Brown, Effect of oxidation on the mechanical properties of liquid gallium and eutectic gallium-indium. Phys. Fluids 1994-Present 24, 063101 (2012)

    Google Scholar 

  133. N. Horasawa, H. Nakajima, S. Takahashi, T. Okabe, Behavior of pure gallium in water and various saline solutions. Dent. Mater. J16, 200–208 (1997)

    Article  Google Scholar 

  134. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, vol. 16.1 (Natl Assn of Corrosion, 1974)

    Google Scholar 

  135. M.R. Khan, C. Trlica, M.D. Dickey, Recapillarity: electrochemically controlled capillary withdrawal of a liquid metal alloy from microchannels. Adv. Funct. Mater. 25, 671–678 (2015)

    Article  Google Scholar 

  136. M.R. Khan, C.B. Eaker, E.F. Bowden, M.D. Dickey, Giant and switchable surface activity of liquid metal via surface oxidation. Proc. Natl. Acad. Sci. 111, 14047–14051 (2014)

    Article  Google Scholar 

  137. A. Fassler, C. Majidi, 3D Structures of liquid-phase GaIn alloy embedded in PDMS with freeze casting. Lab Chip 13, 4442–4450 (2013)

    Article  Google Scholar 

  138. H.-J. Kim, C. Son, B. Ziaie, A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Appl. Phys. Lett. 92, 011904–011904–3 (2008)

    Google Scholar 

  139. S. Cheng, Z. Wu, Microfluidic electronics. Lab. Chip 12, 2782 (2012)

    Article  Google Scholar 

  140. W. Zhao, J.L. Bischof, J. Hutasoit, X. Liu, T.C. Fitzgibbons, J.R. Hayes, P.J.A. Sazio, C. Liu, J.K. Jain, J.V. Badding, M.H.W. Chan, Single-fluxon controlled resistance switching in centimeter-long superconducting gallium-indium eutectic nanowires. Nano Lett. 15, 153–158 (2015)

    Article  Google Scholar 

  141. J.-H. So, M.D. Dickey, Inherently aligned microfluidic electrodes composed of liquid metal. Lab Chip 11, 905–911 (2011)

    Article  Google Scholar 

  142. G.J. Hayes, J.-H. So, A. Qusba, M.D. Dickey, G. Lazzi, Flexible liquid metal alloy (EGaIn) microstrip patch antenna. IEEE Trans. Antennas Propag. 60, 2151–2156 (2012)

    Article  Google Scholar 

  143. H. Ota, K. Chen, Y. Lin, D. Kiriya, H. Shiraki, Z. Yu, T.-J. Ha, A. Javey, Highly deformable liquid-state heterojunction sensors. Nat. Commun. 5, (2014)

    Google Scholar 

  144. A.C. Siegel, D.A. Bruzewicz, D.B. Weibel, G.M. Whitesides, Microsolidics: fabrication of three-dimensional metallic microstructures in poly(dimethylsiloxane). Adv. Mater. 19, 727–733 (2007)

    Article  Google Scholar 

  145. B.A. Gozen, A. Tabatabai, O.B. Ozdoganlar, C. Majidi, High-density soft-matter electronics with micron-scale line width. Adv. Mater. 26, 5211–5216 (2014)

    Article  Google Scholar 

  146. R.K. Kramer, C. Majidi, R.J. Wood, Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Adv. Funct. Mater. 23, 5292–5296 (2013)

    Article  Google Scholar 

  147. S.H. Jeong, A. Hagman, K. Hjort, M. Jobs, J. Sundqvist, Z. Wu, Liquid alloy printing of microfluidic stretchable electronics. Lab Chip 12, 4657 (2012)

    Article  Google Scholar 

  148. R.K. Kramer, J.W. Boley, H.A. Stone, J.C. Weaver, R.J. Wood, Effect of microtextured surface topography on the wetting behavior of eutectic gallium-indium alloys. Langmuir 30, 533–539 (2014)

    Article  Google Scholar 

  149. G. Li, X. Wu, D.-W. Lee, Selectively plated stretchable liquid metal wires for transparent electronics. Sens. Actuators B Chem. 221, 1114–1119 (2015)

    Article  Google Scholar 

  150. A. Tabatabai, A. Fassler, C. Usiak, C. Majidi, Liquid-phase gallium-indium alloy electronics with microcontact printing. Langmuir 29, 6194–6200 (2013)

    Article  Google Scholar 

  151. T. Lu, L. Finkenauer, J. Wissman, C. Majidi, Rapid prototyping for soft-matter electronics. Adv. Funct. Mater. 24, 3351–3356 (2014)

    Article  Google Scholar 

  152. J.W. Boley, E.L. White, G.T.-C. Chiu, R.K. Kramer, Direct writing of gallium-indium alloy for stretchable electronics. Adv. Funct. Mater. 24, 3501–3507 (2014)

    Article  Google Scholar 

  153. J.W. Boley, E.L. White, R.K. Kramer, Mechanically sintered gallium-indium nanoparticles. Adv. Mater. 27, 2355–2360 (2015)

    Article  Google Scholar 

  154. S.H. Jeong, K. Hjort, Z. Wu, Tape transfer printing of a liquid metal alloy for stretchable RF electronics. Sensors 14, 16311–16321 (2014)

    Article  Google Scholar 

  155. Y. Zheng, Q. Zhang, J. Liu, Pervasive liquid metal based direct writing electronics with roller-ball pen. AIP Adv. 3, 112117 (2013)

    Article  Google Scholar 

  156. A. Fassler, C. Majidi, Liquid-phase metal inclusions for a conductive polymer composite. Adv. Mater. 27, 1928–1932 (2015)

    Article  Google Scholar 

  157. H.-J. Kim, C. Son, B. Ziaie, A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric microchannels. Appl. Phys. Lett. 92, 011904 (2008)

    Article  Google Scholar 

  158. H.-J. Kim, T. Maleki, P. Wei, B. Ziaie, A biaxial stretchable interconnect with liquid-alloy-covered joints on elastomeric substrate. J. Microelectromechanical Syst. 18, 138–146 (2009)

    Google Scholar 

  159. H. Hu, K. Shaikh, C. Liu, Super flexible sensor skin using liquid metal as interconnect. in 2007 IEEE Sens. 815–817 (2007)

    Google Scholar 

  160. B. Zhang, Q. Dong, C.E. Korman, Z. Li, M.E. Zaghloul, Flexible packaging of solid-state integrated circuit chips with elastomeric microfluidics. Sci. Rep. 3, (2013)

    Google Scholar 

  161. B.Y. Lim, J. Yoon, J. Yun, D. Kim, S.Y. Hong, S.-J. Lee, G. Zi, J.S. Ha, Biaxially stretchable, integrated array of high performance microsupercapacitors. ACS Nano. 8(11), 11639–11650 (2014)

    Google Scholar 

  162. G.A. Hernandez, D. Martinez, C. Ellis, M. Palmer, M.C. Hamilton, Through Si vias using liquid metal conductors for re-workable 3D electronics, in 2013 IEEE 63rd Electronic Components and Technology Conference (ECTC), (2013), pp. 1401–1406

    Google Scholar 

  163. J. Jang, B. Kim, I. You, J. Park, S. Shin, G. Jeon, J.K. Kim, U. Jeong, Interfacing liquid metals with stretchable metal conductors. ACS Appl. Mater. Interfaces 7(15), 7920–7926 (2015)

    Google Scholar 

  164. J. So, J. Thelen, A. Qusba, G.J. Hayes, G. Lazzi, M.D. Dickey, Reversibly deformable and mechanically tunable fluidic antennas. Adv. Funct. Mater. 19, 3632–3637 (2009)

    Article  Google Scholar 

  165. M. Kubo, X. Li, C. Kim, M. Hashimoto, B.J. Wiley, D. Ham, G.M. Whitesides, Stretchable microfluidic radiofrequency antennas. Adv. Mater. 22, 2749–2752 (2010)

    Article  Google Scholar 

  166. S. Cheng, A. Rydberg, K. Hjort, Z. Wu, Liquid metal stretchable unbalanced loop antenna. Appl. Phys. Lett. 94, 144103–144103-3 (2009)

    Google Scholar 

  167. Y. Huang, Y. Wang, L. Xiao, H. Liu, W. Dong, Z. Yin, Microfluidic serpentine antennas with designed mechanical tunability. Lab Chip 14, 4205–4212 (2014)

    Article  Google Scholar 

  168. B. Aissa, M. Nedil, M.A. Habib, E. Haddad, W. Jamroz, D. Therriault, Y. Coulibaly, F. Rosei, Fluidic patch antenna based on liquid metal alloy/single-wall carbon-nanotubes operating at the S-band frequency. Appl. Phys. Lett. 103, 063101 (2013)

    Article  Google Scholar 

  169. A. Qusba, A.K. RamRakhyani, J.-H. So, G.J. Hayes, M.D. Dickey, G. Lazzi, On the design of microfluidic implant coil for flexible telemetry system. IEEE Sens. J. 14, 1074–1080 (2014)

    Google Scholar 

  170. N. Lazarus, C.D. Meyer, S.S. Bedair, H. Nochetto, I.M. Kierzewski, Multilayer liquid metal stretchable inductors. Smart Mater. Struct. 23, 085036 (2014)

    Article  Google Scholar 

  171. A. Fassler, C. Majidi, Soft-matter capacitors and inductors for hyperelastic strain sensing and stretchable electronics. Smart Mater. Struct. 22, 055023 (2013)

    Article  Google Scholar 

  172. S. Cheng, Z. Wu, Microfluidic stretchable RF electronics. Lab. Chip 10, 3227–3234 (2010)

    Article  Google Scholar 

  173. M. Jobs, K. Hjort, A. Rydberg, Z. Wu, A tunable spherical cap microfluidic electrically small antenna. Small 9, 3230–3234 (2013)

    Google Scholar 

  174. G.J. Hayes, S.C. Desai, Y. Liu, P. Annamaa, G. Lazzi, M.D. Dickey, Microfluidic coaxial transmission line and phase shifter. Microw. Opt. Technol. Lett. 56, 1459–1462 (2014)

    Article  Google Scholar 

  175. A.M. Morishita, C.K.Y. Kitamura, A.T. Ohta, W.A. Shiroma, Two-octave tunable liquid-metal monopole antenna. Electron. Lett. 50, 19–20 (2014)

    Article  Google Scholar 

  176. D. Rodrigo, L. Jofre, B.A. Cetiner, Circular beam-steering reconfigurable antenna with liquid metal parasitics. IEEE Trans. Antennas Propag. 60, 1796–1802 (2012)

    Article  MathSciNet  Google Scholar 

  177. R.A. Liyakath, A. Takshi, G. Mumcu, Multilayer stretchable conductors on polymer substrates for conformal and reconfigurable antennas. IEEE Antennas Wirel. Propag. Lett. 12, 603–606 (2013)

    Article  Google Scholar 

  178. A. Pourghorban Saghati, J. Singh Batra, J. Kameoka, K. Entesari, A microfluidically-reconfigurable dual-band slot antenna with a frequency coverage ratio of 3:1. IEEE Antennas Wirel. Propag. Lett. 1–1 (2015)

    Google Scholar 

  179. Y. Damgaci, B.A. Cetiner, A frequency reconfigurable antenna based on digital microfluidics. Lab Chip 13, 2883–2887 (2013)

    Article  Google Scholar 

  180. A.J. King, J.F. Patrick, N.R. Sottos, S.R. White, G.H. Huff, J.T. Bernhard, Microfluidically switched frequency-reconfigurable slot antennas. IEEE Antennas Wirel. Propag. Lett. 12, 828–831 (2013)

    Article  Google Scholar 

  181. M. Wang, C. Trlica, M.R. Khan, M.D. Dickey, J.J. Adams, A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity. J. Appl. Phys. 117, 194901 (2015)

    Article  Google Scholar 

  182. C. Koo, B.E. LeBlanc, M. Kelley, H.E. Fitzgerald, G.H. Huff, A. Han, Manipulating liquid metal droplets in microfluidic channels with minimized skin residues toward tunable RF applications. J. Microelectromechanical Syst. 1–1 (2015)

    Google Scholar 

  183. M. Li, B. Yu, N. Behdad, Liquid-tunable frequency selective surfaces. IEEE Microw. Wirel. Compon. Lett. 20, 423–425 (2010)

    Article  Google Scholar 

  184. T. Bhattacharjee, H. Jiang, N.A. Behdad, Fluidically-tunable, dual-band patch antenna with closely-spaced bands of operation. IEEE Antennas Wirel. Propag. Lett. 1–1 (2015)

    Google Scholar 

  185. A. Pourghorban Saghati, J.S. Batra, J. Kameoka, K. Entesari, A miniaturized microfluidically reconfigurable coplanar waveguide bandpass filter with maximum power handling of 10 watts. IEEE Trans. Microw. Theory Tech. 1–11 (2015)

    Google Scholar 

  186. B. Wu, M. Okoniewski, C. Hayden, A pneumatically controlled reconfigurable antenna with three states of polarization. IEEE Trans. Antennas Propag. 62, 5474–5484 (2014)

    Article  MathSciNet  Google Scholar 

  187. M.R. Khan, G.J. Hayes, S. Zhang, M.D. Dickey, G. Lazzi, A Pressure responsive fluidic microstrip open stub resonator using a liquid metal alloy. IEEE Microw. Wirel. Compon. Lett. 22, 577–579 (2012)

    Article  Google Scholar 

  188. M.R. Khan, G.J. Hayes, J.-H. So, G. Lazzi, M.D. Dickey, A frequency shifting liquid metal antenna with pressure responsiveness. Appl. Phys. Lett. 99, 013501–013503 (2011)

    Article  Google Scholar 

  189. E.F. Borra, G. Tremblay, Y. Huot, J. Gauvin, Gallium liquid mirrors: basic technology, optical-shop tests, and observations. PASP 109, 319–325 (1997)

    Google Scholar 

  190. J. Wang, S. Liu, Z.V. Vardeny, A. Nahata, Liquid metal-based plasmonics. Opt. Express 20, 2346–2353 (2012)

    Article  Google Scholar 

  191. J. Wang, S. Liu, A. Nahata, Reconfigurable plasmonic devices using liquid metals. Opt. Express 20, 12119–12126 (2012)

    Article  Google Scholar 

  192. K. Ling, K. Kim, S. Lim, Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS). Opt. Express 23, 21375 (2015)

    Article  Google Scholar 

  193. T.S. Kasirga, Y.N. Ertas, M. Bayindir, Microfluidics for reconfigurable electromagnetic metamaterials. Appl. Phys. Lett. 95, 214102–214102-3 (2009)

    Google Scholar 

  194. P. Liu, S. Yang, A. Jain, Q. Wang, H. Jiang, J. Song, T. Koschny, C.M. Soukoulis, L. Dong, Tunable meta-atom using liquid metal embedded in stretchable polymer. J. Appl. Phys. 118, 014504 (2015)

    Article  Google Scholar 

  195. Y. Deng, J. Liu, Liquid metal based stretchable radiation-shielding film. J. Med. Devices-Trans. ASME 9, 014502 (2015)

    Article  Google Scholar 

  196. J. Park, S. Wang, M. Li, C. Ahn, J.K. Hyun, D.S. Kim, D.K. Kim, J.A. Rogers, Y. Huang, S. Jeon, Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat. Commun. 3, 916 (2012)

    Article  Google Scholar 

  197. K.P. Mineart, Y. Lin, S.C. Desai, A.S. Krishnan, R.J. Spontak, M.D. Dickey, Ultrastretchable, cyclable and recyclable 1- and 2-dimensional conductors based on physically cross-linked thermoplastic elastomer gels. Soft Matter 9, 7695–7700 (2013)

    Article  Google Scholar 

  198. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  199. H.-J. Koo, J.-H. So, M.D. Dickey, O.D. Velev, Towards all-soft matter circuits: prototypes of quasi-liquid devices with memristor characteristics. Adv. Mater. 23, 3559–3564 (2011)

    Article  Google Scholar 

  200. J.-H. So, H.-J. Koo, M.D. Dickey, O.D. Velev, Ionic current rectification in soft-matter diodes with liquid-metal electrodes. Adv. Funct. Mater. 22, 625–631 (2012)

    Article  Google Scholar 

  201. S. Liu, X. Sun, O.J. Hildreth, K. Rykaczewski, Design and characterization of a single channel two-liquid capacitor and its application to hyperelastic strain sensing. Lab Chip 15, 1376–1384 (2015)

    Article  Google Scholar 

  202. A.C. Siegel, S.K.Y. Tang, C.A. Nijhuis, M. Hashimoto, S.T. Phillips, M.D. Dickey, G.M. Whitesides, Cofabrication: a strategy for building multicomponent microsystems. Acc. Chem. Res. 43, 518–528 (2010)

    Article  Google Scholar 

  203. S.-Y. Tang, K. Khoshmanesh, V. Sivan, P. Petersen, A.P. O’Mullane, D. Abbott, A. Mitchell, K. Kalantar-zadeh, Liquid metal enabled pump. Proc. Natl. Acad. Sci. 111, 3304–3309 (2014)

    Article  Google Scholar 

  204. M. Gao, L. Gui, A handy liquid metal based electroosmotic flow pump. Lab Chip 14, 1866–1872 (2014)

    Article  Google Scholar 

  205. M. Knoblauch, J.M. Hibberd, J.C. Gray, A.J. van Bel, A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes. Nat. Biotechnol. 17, 906–909 (1999)

    Article  Google Scholar 

  206. M. Hodes, R. Zhang, L.S. Lam, R. Wilcoxon, N. Lower, On the potential of galinstan-based minichannel and minigap cooling. IEEE Trans. Compon. Packag. Manuf. Technol. 4, 46–56 (2014)

    Article  Google Scholar 

  207. J. Je, J. Lee, Design, fabrication, and characterization of liquid metal microheaters. J. Microelectromechanical Syst. 23, 1156–1163 (2014)

    Article  Google Scholar 

  208. T. Krupenkin, J.A. Taylor, Reverse electrowetting as a new approach to high-power energy harvesting. Nat. Commun. 2, 448 (2011)

    Article  Google Scholar 

  209. N. Pekas, Q. Zhang, D. Juncker, Electrostatic actuator with liquid metal-elastomer compliant electrodes used for on-chip microvalving. J. Micromechanics Microengineering 22, 097001 (2012)

    Article  Google Scholar 

  210. S.-Y. Tang, V. Sivan, P. Petersen, W. Zhang, P.D. Morrison, K. Kalantar-zadeh, A. Mitchell, K. Khoshmanesh, Liquid metal actuator for inducing chaotic advection. Adv. Funct. Mater. 24, 5851–5858 (2014)

    Article  Google Scholar 

  211. Y. Zhang, Z. Zhao, D. Fracasso, R.C. Chiechi, Bottom-up molecular tunneling junctions formed by self-assembly. Isr. J. Chem. 54, 513–533 (2014)

    Article  Google Scholar 

  212. K. Du, E. Glogowski, M.T. Tuominen, T. Emrick, T.P. Russell, A.D. Dinsmore, Self-assembly of gold nanoparticles on gallium droplets: controlling charge transport through microscopic devices. Langmuir 29, 13640–13646 (2013)

    Article  Google Scholar 

  213. E.A. Weiss, R.C. Chiechi, S.M. Geyer, V.J. Porter, D.C. Bell, M.G. Bawendi, G.M. Whitesides, Size-dependent charge collection in junctions containing single-size and multi-size arrays of colloidal CdSe quantum dots. J. Am. Chem. Soc. 130, 74–82 (2008)

    Article  Google Scholar 

  214. M.M. Yazdanpanah, S. Chakraborty, S.A. Harfenist, R.W. Cohn, B.W. Alphenaar, Formation of highly transmissive liquid metal contacts to carbon nanotubes. Appl. Phys. Lett. 85, 3564–3566 (2004)

    Article  Google Scholar 

  215. ADu Pasquier, S. Miller, M. Chhowalla, On the use of Ga-In eutectic and halogen light source for testing P3HT-PCBM organic solar cells. Sol. Energy Mater. Sol. Cells 90, 1828–1839 (2006)

    Article  Google Scholar 

  216. F. Ongul, S.A. Yuksel, S. Bozar, G. Cakmak, H.Y. Guney, D.A.M. Egbe, S. Gunes, Vacuum-free processed bulk heterojunction solar cells with E-GaIn cathode as an alternative to Al electrode. J. Phys. Appl. Phys. 48, 175102 (2015)

    Article  Google Scholar 

  217. D.J. Lipomi, B.C.-K. Tee, M. Vosgueritchian, Z. Bao, Stretchable organic solar cells. Adv. Mater. 23, 1771–1775 (2011)

    Article  Google Scholar 

  218. Q. Wang, X. Niu, Q. Pei, M.D. Dickey, X. Zhao, Electromechanical instabilities of thermoplastics: theory and in situ observation. Appl. Phys. Lett. 101, 141911 (2012)

    Article  Google Scholar 

  219. Y. Liu., M. Gao, S. Mei, Y. Han, J. Liu, Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators. Appl. Phys. Lett. 103, 064101–064101-4 (2013)

    Google Scholar 

  220. C. Jin, J. Zhang, X. Li, X. Yang, J. Li, J. Liu, Injectable 3-D fabrication of medical electronics at the target biological tissues. Sci. Rep. 3, (2013)

    Google Scholar 

  221. Y. Yu, J. Zhang, J. Liu, Biomedical Implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS ONE 8, e58771 (2013)

    Google Scholar 

  222. H.J. Meiselman, G.R. Cokelet, Fabrication of hollow vascular replicas using a gallium injection technique. Microvasc. Res. 9, 182–189 (1975)

    Article  Google Scholar 

  223. M. Bradley, A.H. Sacks, A technique for casting and fabricating hollow slide models of the microcirculation. Microvasc. Res. 22, 210–218 (1981)

    Article  Google Scholar 

  224. D. Kim, P. Thissen, G. Viner, D.-W. Lee, W. Choi, Y.J. Chabal, J.-B. Lee. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. ACS Appl. Mater. Interfaces 5, 179–185 (2013)

    Google Scholar 

  225. D. Kim, R.G. Pierce, R. Henderson, S.J. Doo, K. Yoo, J.-B. Lee, Liquid metal actuation-based reversible frequency tunable monopole antenna. Appl. Phys. Lett. 105, 234104 (2014)

    Article  Google Scholar 

  226. G. Li, M. Parmar, D. Kim, J.-B. Lee, D.-W. Lee, PDMS based coplanar microfluidic channels for the surface reduction of oxidized Galinstan. Lab. Chip 14, 200 (2014)

    Google Scholar 

  227. B. Cumby, J. Heikenfeld, D. Mast, C. Tabor, M. Dickey, Robust pressure-actuated liquid metal devices showing reconfigurable electromagnetic effects at GHz frequencies, in 2014 IEEE Antennas and Propagation Society International Symposium APSURSI 553–554 (2014)

    Google Scholar 

  228. B.L. Cumby, G.J. Hayes, M.D. Dickey, R.S. Justice, C.E. Tabor, J.C. Heikenfeld, Reconfigurable liquid metal circuits by Laplace pressure shaping. Appl. Phys. Lett. 101, 174102 (2012)

    Article  Google Scholar 

  229. G. Li, M. Parmar, D.-W. Lee, An oxidized liquid metal-based microfluidic platform for tunable electronic device applications. Lab Chip 15, 766–775 (2015)

    Article  Google Scholar 

  230. D. Kim, D. Jung, J.H. Yoo, Y. Lee, W. Choi, G.S. Lee, K. Yoo, J.-B. Lee, Stretchable and bendable carbon nanotube on PDMS super-lyophobic sheet for liquid metal manipulation. J. Micromechanics Microengineering 24, 055018 (2014)

    Article  Google Scholar 

  231. G. Beni, S. Hackwood, J.L. Jackel, Continuous electrowetting effect. Appl. Phys. Lett. 40, 912–914 (1982)

    Article  Google Scholar 

  232. R.C. Gough, A.M. Morishita, J.H. Dang, W. Hu, W.A. Shiroma, A.T. Ohta, Continuous electrowetting of non-toxic liquid metal for RF applications. IEEE Access 2, 874–882 (2014)

    Article  Google Scholar 

  233. H.J. Zeng, A.D. Feinerman, Z.L. Wan, P.R. Patel, Piston-motion micromirror based on electrowetting of liquid metals. J. Microelectromechanical Syst. 14, 285–294 (2005)

    Article  Google Scholar 

  234. Z. Wan, H. Zeng, A. Feinerman, Area-tunable micromirror based on electrowetting actuation of liquid-metal droplets. Appl. Phys. Lett. 89, 201107–201107-3 (2006)

    Google Scholar 

  235. S.-Y. Tang, Y. Lin, I.D. Joshipura, K. Khoshmanesh, M.D. Dickey, Steering liquid metal flow in microchannels using low voltages. Lab Chip 15, 3905–3911 (2015)

    Google Scholar 

  236. J.T.H. Tsai, C.-M. Ho, F.-C. Wang, C.-T. Liang, Ultrahigh contrast light valve driven by electrocapillarity of liquid gallium. Appl. Phys. Lett. 95, 251110 (2009)

    Article  Google Scholar 

  237. S.-Y. Tang, V. Sivan, K. Khoshmanesh, A.P. O’Mullane, X. Tang, B. Gol, N. Eshtiaghi, F. Lieder, P. Petersen, A. Mitchell, K. Kalantar-zadeh, Electrochemically induced actuation of liquid metal marbles. Nanoscale 5, 5949–5957 (2013)

    Article  Google Scholar 

  238. X. Tang, S.-Y. Tang, V. Sivan, W. Zhang, A. Mitchell, K. Kalantar-zadeh, K. Khoshmanesh, Photochemically induced motion of liquid metal marbles. Appl. Phys. Lett. 103, 174104 (2013)

    Article  Google Scholar 

  239. L. Latorre, J. Kim, J. Lee, P.P. de Guzman, H.J. Lee, P. Nouet, C.J. Kim, Electrostatic actuation of microscale liquid-metal droplets. J. Microelectromechanical Syst. 11, 302–308 (2002)

    Article  Google Scholar 

  240. D. Kim, J.-B. Lee, Magnetic-field-induced liquid metal droplet manipulation. J. Korean Phys. Soc. 66, 282–286 (2015)

    Article  Google Scholar 

  241. R.K. Kramer, C. Majidi, R.J. Wood, Wearable tactile keypad with stretchable artificial skin. in 2011 IEEE International Conference on Robotics and Automation ICRA, (2011), pp. 1103–1107

    Google Scholar 

  242. F.L. Hammond, R.K. Kramer, Q. Wan, R.D. Howe, R.J. Wood, Soft tactile sensor arrays for force feedback in micromanipulation. IEEE Sens. J. 14, 1443–1452 (2014)

    Google Scholar 

  243. R.K. Kramer, C. Majidi, R. Sahai, R.J. Wood, Soft curvature sensors for joint angle proprioception. in 2011 IEEERSJ International Conference on Intelligent Robots and Systems (IROS) (2011), pp. 1919–1926

    Google Scholar 

  244. Y.-L. Park, B.-R. Chen, R.J. Wood, Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sens. J. 12, 2711–2718 (2012)

    Google Scholar 

  245. R. Matsuzaki, K. Tabayashi, Highly stretchable, global, and distributed local strain sensing line using gainsn electrodes for wearable electronics. Adv. Funct. Mater. 25, 3806–3813 (2015)

    Article  Google Scholar 

  246. K. Noda, E. Iwase, K. Matsumoto, I. Shimoyama, Stretchable liquid tactile sensor for robot-joints, in 2010 IEEE International Conference on Robotics and Automation (ICRA) (2010), pp. 4212–4217

    Google Scholar 

  247. J.T.B. Overvelde, Y. Mengüç, P. Polygerinos, Y. Wang, Z. Wang, C.J. Walsh, R.J. Wood, K. Bertoldi, Mechanical and electrical numerical analysis of soft liquid-embedded deformation sensors analysis. Extreme Mech. Lett. 1, 42–46 (2014)

    Article  Google Scholar 

  248. J. Park, I. You, S. Shin, U. Jeong, Material approaches to stretchable strain sensors. ChemPhysChem 16, 1155–1163 (2015)

    Google Scholar 

  249. R.D.P. Wong, J.D. Posner, V.J. Santos, Flexible microfluidic normal force sensor skin for tactile feedback. Sens. Actuators Phys. 179, 62–69 (2012)

    Article  Google Scholar 

  250. M.G. Mohammed, M.D. Dickey, Strain-controlled diffraction of light from stretchable liquid metal micro-components. Sens. Actuators Phys. 193, 246–250 (2013)

    Article  Google Scholar 

  251. H. Ota, K. Chen, Y. Lin, D. Kiriya, H. Shiraki, Z. Yu, T.-J. Ha, A. Javey, Highly deformable liquid-state heterojunction sensors. Nat. Commun. 5, 5032 (2014)

    Article  Google Scholar 

  252. Y. Gao, Y. Bando, Nanotechnology: carbon nanothermometer containing gallium. Nature 415, 599 (2002)

    Article  Google Scholar 

  253. H. Li, Y. Yang, J. Liu, Printable tiny thermocouple by liquid metal gallium and its matching metal. Appl. Phys. Lett. 101, 073511 (2012)

    Article  Google Scholar 

  254. Y.-L. Park, C. Majidi, R. Kramer, P. Bérard, R.J. Wood, Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromechanics Microengineering 20, 125029 (2010)

    Article  Google Scholar 

  255. S.J. Benight, C. Wang, J.B.H. Tok, Z. Bao, Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci. 38, 1961–1977 (2013)

    Article  Google Scholar 

  256. B.J. Blaiszik, S.L.B. Kramer, M.E. Grady, D.A. McIlroy, J.S. Moore, N.R. Sottos, S.R. White, Autonomic restoration of electrical conductivity. Adv. Mater. 24, 398–401 (2012)

    Article  Google Scholar 

  257. P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008)

    Article  Google Scholar 

  258. E. Palleau, S. Reece, S.C. Desai, M.E. Smith, M.D. Dickey, Self-healing stretchable wires for reconfigurable circuit wiring and 3d microfluidics. Adv. Mater. 25, 1589–1592 (2013)

    Article  Google Scholar 

  259. R.D. Deshpande, J. Li, Y.-T. Cheng, M.W. Verbrugge, Liquid metal alloys as self-healing negative electrodes for lithium ion batteries. J. Electrochem. Soc. 158, A845–A849 (2011)

    Article  Google Scholar 

  260. D.J. Lipomi, Z. Bao, Stretchable, elastic materials and devices for solar energy conversion. Energy Environ. Sci. 4, 3314–3328 (2011)

    Article  Google Scholar 

  261. V.J. King, Liquid alloy for making contacts to metallic and nonmetallic surfaces. Rev. Sci. Instrum. 32, 1407 (1961)

    Article  Google Scholar 

  262. E. Glickman, M. Levenshtein, L. Budic, N. Eliaz, Interaction of liquid and solid gallium with thin silver films: synchronized spreading and penetration. Acta Mater. 59, 914–926 (2011)

    Article  Google Scholar 

  263. E. Pereiro-Lopez, W. Ludwig, D. Bellet, Discontinuous penetration of liquid Ga into grain boundaries of Al polycrystals. Acta Mater. 52, 321–332 (2004)

    Article  Google Scholar 

  264. D. Prasai, J.C. Tuberquia, R.R. Harl, G.K. Jennings, K.I. Bolotin, Graphene: corrosion-inhibiting coating. ACS Nano 6, 1102–1108 (2012)

    Article  Google Scholar 

  265. P. Ahlberg, S.H. Jeong, M. Jiao, Z. Wu, U. Jansson, S.-L. Zhang, Z.-B. Zhang, Graphene as a diffusion barrier in galinstan-solid metal contacts. IEEE Trans. Electron Devices 61, 2996–3000 (2014)

    Article  Google Scholar 

  266. J.V. Naidich, J.N. Chuvashov, Wettability and contact interaction of gallium-containing melts with non-metallic solids. J. Mater. Sci. 18, 2071–2080 (1983)

    Article  Google Scholar 

  267. K. Doudrick, S. Liu, E.M. Mutunga, K.L. Klein, V. Damle, K.K. Varanasi, K. Rykaczewski, Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-based liquid metals. Langmuir 30, 6867–6877 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to Chris Trlica for helping to assemble Fig. 1.6 and for editing this chapter. I also thank many students and colleagues whose hard work I have tried to highlight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Dickey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dickey, M.D. (2016). Liquid Metals for Soft and Stretchable Electronics. In: Rogers, J., Ghaffari, R., Kim, DH. (eds) Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-28694-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28694-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28692-1

  • Online ISBN: 978-3-319-28694-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics