Skip to main content

Classifying Calpain Inhibitors for the Treatment of Cataracts: A Self Organising Map (SOM) ANN/KM Approach in Drug Discovery

  • Chapter
  • First Online:
Artificial Neural Network Modelling

Part of the book series: Studies in Computational Intelligence ((SCI,volume 628))

  • 7763 Accesses

Abstract

Calpain inhibitors are possible therapeutic agents in the treatment of cataracts. These covalent inhibitors contain an electrophilic anchor (“warhead”), an aldehyde that reacts with the active site cysteine. Whilst high throughput docking of such ligands into high resolution protein structures (e.g. calpain) is a standard computational approach in drug discovery, there is no docking program that consistently achieves low rates of both false positives (FPs) and negatives (FNs) for ligands that react covalently (via irreversible interactions) with the target protein. Schroedinger’s GLIDE score, widely used to screen ligand libraries, is known to give high false classification, however a two-level Self Organizing Map (SOM) artificial neural network (ANN) algorithm, with KM clustering proved that the addition of two structural components of the calpain molecule, number hydrogen bonds and warhead distance, combined with GLIDE score (or its partial energy subcomponents) provide a superior predictor set for classification of true molecular binding strength (IC50). SOM ANN/KM significantly reduced the number of FNs by 64 % and FPs by 26 %, compared to the glide score alone. FPs were shown to be mostly esters and amides plus alcohols and non-classical, and FNs mainly aldehydes and ketones, masked aldehydes and ketones and Michael.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.G. Maltarollo, et al., Applications of Artificial Neural Networks in Chemical Problems, Artificial Neural NetworksArchitectures and Applications (InTech, 2013)

    Google Scholar 

  2. V.G. Maltarollo et al., Applying machine learning techniques for ADME-Tox prediction: a review. Exp. Opin. Drug Metab. Toxicol. 11, 259–271 (2015)

    Article  Google Scholar 

  3. F. Marini et al., Artificial neural networks in chemometrics: History, examples and perspectives. Microchem. J. 88, 178–185 (2008)

    Article  Google Scholar 

  4. L. Wang, et al., Self-organizing map clustering analysis for molecular data, ed. by J. Wang, et al., in Advances in Neural Networks, ISNN 2006, vol. 3971 (Springer, Berlin, 2006), pp. 1250–1255

    Google Scholar 

  5. J.C. Gertrudes et al., Machine learning techniques and drug design. Curr. Med. Chem. 19, 4289–4297 (2012)

    Article  Google Scholar 

  6. R.G. Brereton, Self organising maps for visualising and modelling. Chem. Cent. J. 6(Suppl 2), S1 (2012)

    Article  Google Scholar 

  7. Y.D. Xiao, et al., Supervised self-organizing maps in drug discovery. 1. Robust behavior with overdetermined data sets. J. Chem. Inf. Model 45, 1749–1758 (2005)

    Google Scholar 

  8. Y.D. Xiao, et al., Supervised self-organizing maps in drug discovery. 2. Improvements in descriptor selection and model validation. J. Chem. Inf. Model 46, 137–144 (2006)

    Google Scholar 

  9. F. Marini et al., Class-modeling using Kohonen artificial neural networks. Anal. Chim. Acta 544, 306–314 (2005)

    Article  Google Scholar 

  10. M. Stahl et al., Mapping of protein surface cavities and prediction of enzyme class by a self-organizing neural network. Protein Eng. 13, 83–88 (2000)

    Article  Google Scholar 

  11. A.T. Neffe, A.D. Abell, Developments in the design and synthesis of calpain inhibitors. Curr. Opin. Drug Discov. Dev. 8, 684–700 (2005)

    Google Scholar 

  12. A.D. Abell et al., Molecular modeling, synthesis, and biological evaluation of macrocyclic calpain inhibitors. Angew. Chem. Int. Ed. Engl. 48, 1455–1458 (2009)

    Article  Google Scholar 

  13. A.D. Abell et al., Investigation into the P3 binding domain of m-calpain using photoswitchable diazo- and triazene-dipeptide aldehydes: new anticataract agents. J. Med. Chem. 50, 2916–2920 (2007)

    Article  Google Scholar 

  14. M.A. Jones et al., Synthesis, biological evaluation and molecular modelling of N-heterocyclic dipeptide aldehydes as selective calpain inhibitors. Bioorg. Med. Chem. 16, 6911–6923 (2008)

    Article  Google Scholar 

  15. S.A. Jones et al., The preparation of macrocyclic calpain inhibitors by ring closing metathesis and cross metathesis. Aust. J. Chem. 67, 1257–1263 (2014)

    Google Scholar 

  16. S.A. Jones et al., A template-based approach to inhibitors of calpain 2, 20S proteasome, and HIV-1 protease. ChemMedChem 8, 1918–1921 (2013)

    Article  Google Scholar 

  17. J.D. Morton et al., A macrocyclic calpain inhibitor slows the development of inherited cortical cataracts in a sheep model. Invest. Ophthalmol. Vis. Sci. 54, 389–395 (2013)

    Article  Google Scholar 

  18. A.D. Pehere et al., Synthesis and extended activity of triazole-containing macrocyclic protease inhibitors. Chemistry 19, 7975–7981 (2013)

    Article  Google Scholar 

  19. M. Pietsch et al., Calpains: attractive targets for the development of synthetic inhibitors. Curr. Top. Med. Chem. 10, 270–293 (2010)

    Article  Google Scholar 

  20. B.G. Stuart et al., Molecular modeling: a search for a calpain inhibitor as a new treatment for cataractogenesis. J. Med. Chem. 54, 7503–7522 (2011)

    Article  Google Scholar 

  21. K.C.H. Chua et al., Macrocyclic Protease Inhibitors with reduced peptide character. Angew. Chem. Int. Ed. 53, 7828–7831 (2014)

    Article  Google Scholar 

  22. J.P. Hughes et al., Principles of early drug discovery. Br. J. Pharmacol. 162, 1239–1249 (2011)

    Article  Google Scholar 

  23. A.D. Bochevarov et al., Jaguar: a high-performance quantum chemistry software program with strengths in life and materials sciences. Int. J. Quantum Chem. 113, 2110–2142 (2013)

    Article  Google Scholar 

  24. E. Kellenberger et al., Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 57, 225–242 (2004)

    Article  Google Scholar 

  25. R. Sink et al., False positives in the early stages of drug discovery. Curr. Med. Chem. 17, 4231–4255 (2010)

    Article  Google Scholar 

  26. R. Macarron, Critical review of the role of HTS in drug discovery. Drug Discov. Today 11, 277–279 (2006)

    Article  Google Scholar 

  27. E. Yuriev, P.A. Ramsland, Latest developments in molecular docking: 2010–2011 in review. J. Mol. Recognit. 26, 215–239 (2013)

    Article  Google Scholar 

  28. K. Zhu et al., Docking covalent inhibitors: a parameter free approach to pose prediction and scoring. J. Chem. Inf. Model. 54, 1932–1940 (2014)

    Article  Google Scholar 

  29. S. Kawatkar et al., Virtual fragment screening: an exploration of various docking and scoring protocols for fragments using Glide. J. Comput. Aided Mol. Des. 23, 527–539 (2009)

    Article  Google Scholar 

  30. T.A. Halgren et al., Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 47, 1750–1759 (2004)

    Article  Google Scholar 

  31. A.R. Leach et al., Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J. Med. Chem. 49, 5851–5855 (2006)

    Article  Google Scholar 

  32. T. Schulz-Gasch, M. Stahl, Scoring functions for protein-ligand interactions: a critical perspective. Drug Discov. Today Technol. 1, 231–239 (2004)

    Article  Google Scholar 

  33. P. Ferrara et al., Assessing scoring functions for protein-ligand interactions. J. Med. Chem. 47, 3032–3047 (2004)

    Article  Google Scholar 

  34. G.D. Geromichalos, Importance of molecular computer modeling in anticancer drug development. J. Buon. 12(Suppl 1), S101–118 (2007)

    Google Scholar 

  35. A.J. Knox, et al., Considerations in compound database preparation—“hidden” impact on virtual screening results. J. Chem. Inf. Model. 45, 1908–1919 (2005)

    Google Scholar 

  36. N. Moitessier et al., Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br. J. Pharmacol. 153(Suppl 1), S7–26 (2008)

    Google Scholar 

  37. T. Tuccinardi, Docking-based virtual screening: recent developments. Comb. Chem. High Throughput Screen. 12, 303–314 (2009)

    Article  Google Scholar 

  38. R. Mah et al., Drug discovery considerations in the development of covalent inhibitors. Bioorg. Med. Chem. Lett. 24, 33–39 (2014)

    Article  Google Scholar 

  39. S.J. Macalino, et al., Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res. (2015)

    Google Scholar 

  40. T. Kohonen, Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013)

    Article  Google Scholar 

  41. J. Vesanto, E. Alhoniemi, Clustering of the self-organizing map. IEEE Trans. Neural Netw. 11, 586–600 (2000)

    Article  Google Scholar 

  42. R. Rojas, Neural Networks: A Systematic Introduction (Springer, New York, Inc., 1996)

    Google Scholar 

  43. G. Schneider, Analysis of chemical space, in Madame Curie Bioscience Database [Internet] (Landes Bioscience, 2000). http://www.ncbi.nlm.nih.gov/books/NBK6062/

  44. J. Sadowski, H. Kubinyi, A scoring scheme for discriminating between drugs and nondrugs. J. Med. Chem. 41, 3325–3329 (1998)

    Article  Google Scholar 

  45. V.N. Viswanadhan, et al., Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. J. Chem. Inf. Comput. Sci. 29, 163–172 (1989)

    Google Scholar 

  46. M. Otto, Chemometrics: Statistics and Computer Application in Analytical Chemistry Weinheim (Wiley-VCH, New York, 1999)

    Google Scholar 

  47. D.W. Wichern, R.A. Johnson, Applied Multivariate Statistical Analysis (Prentice Hall, Upper Saddle River, 2007)

    Google Scholar 

  48. J.C. Fort, SOM’s mathematics. Neural Netw. 19, 812–816 (2006)

    Article  MATH  Google Scholar 

  49. J. Vesanto, SOM-based data visualization methods. Intell. Data Anal. 3, 111–126 (1999)

    Article  MATH  Google Scholar 

  50. J. Himberg, et al., The Self-organizing map as a tool in knowledge engineering, in Pattern Recognition in Soft Computing Paradigm, ed. (World Scientific Publishing Co., Inc., 2001), pp. 38–65

    Google Scholar 

  51. MATLAB:2015, version R2015a (The MathWorks Inc., Natick, 2015)

    Google Scholar 

  52. J. Vesanto, et al., Self-organizing map in Matlab: the SOM Toolbox, in Matlab DSP Conference, 1999, pp. 35–40

    Google Scholar 

  53. R. Wehrens, L.M.C. Buydens, Self- and Super-organizing maps in R: The kohonen package. J. Stat. Softw. 21, 19 (2007)

    Google Scholar 

  54. T. Vatanen et al., Self-organization and missing values in SOM and GTM. Neurocomputing 147, 60–70 (2015)

    Article  Google Scholar 

  55. B. Everitt et al., Cluster Analysis (Wiley, New York, 2011)

    Book  MATH  Google Scholar 

  56. I.L. Hudson, et al., SOM clustering and modelling of Australian railway drivers’ sleep, wake, duty profiles, in 28th International Workshop on Statistical Modelling, Palermo, Italy, 2013, pp. 177–182

    Google Scholar 

  57. I.L. Hudson, J.A. Sleep, Comparison of self-organising maps, mixture, K-means and hybrid approaches to risk classification of passive railway crossings, in 23rd International Workshop on Statistical Modelling (IWSM), Utrecht, The Netherlands, 2008, pp. 396–401

    Google Scholar 

  58. F. Lopez-Vallejo et al., Integrating virtual screening and combinatorial chemistry for accelerated drug discovery. Comb. Chem. High Throughput Screen. 14, 475–487 (2011)

    Article  Google Scholar 

  59. S.Y. Huang, X. Zou, Advances and challenges in protein-ligand docking. Int. J. Mol. Sci. 11, 3016–3034 (2010)

    Article  Google Scholar 

  60. X. Li et al., Evaluation of the performance of four molecular docking programs on a diverse set of protein-ligand complexes. J. Comput. Chem. 31, 2109–2125 (2010)

    Article  Google Scholar 

  61. C. Bissantz et al., Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J. Med. Chem. 43, 4759–4767 (2000)

    Article  Google Scholar 

  62. D.B. Kitchen et al., Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3, 935–949 (2004)

    Article  Google Scholar 

  63. W. Xu et al., Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets. J. Mol. Graph. Model. 57, 76–88 (2015)

    Article  Google Scholar 

  64. Swiss Institute of Bioinformatics, Click2Drug: Directory of Computer-Aided Drug Design Tools (2013)

    Google Scholar 

  65. I.D. Kuntz et al., A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 161, 269–288 (1982)

    Article  Google Scholar 

  66. C.A. Baxter et al., Flexible docking using Tabu search and an empirical estimate of binding affinity. Proteins 33, 367–382 (1998)

    Article  Google Scholar 

  67. J.S. Dixon, Evaluation of the CASP2 docking section. Proteins 1(Suppl), 198–204 (1997)

    Article  Google Scholar 

  68. D.K. Jones-Hertzog, W.L. Jorgensen, Binding affinities for sulfonamide inhibitors with human thrombin using Monte Carlo simulations with a linear response method. J. Med. Chem. 40, 1539–1549 (1997)

    Article  Google Scholar 

  69. H. Li et al., GAsDock: a new approach for rapid flexible docking based on an improved multi-population genetic algorithm. Bioorg. Med. Chem. Lett. 14, 4671–4676 (2004)

    Article  Google Scholar 

  70. M.D. Miller et al., FLOG: a system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure. J. Comput. Aided Mol. Des. 8, 153–174 (1994)

    Article  Google Scholar 

  71. G.M. Morris et al., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)

    Article  Google Scholar 

  72. E. Perola et al., Successful virtual screening of a chemical database for farnesyltransferase inhibitor leads. J. Med. Chem. 43, 401–408 (2000)

    Article  Google Scholar 

  73. M. Rarey et al., A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–489 (1996)

    Article  Google Scholar 

  74. C.M. Venkatachalam et al., LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model. 21, 289–307 (2003)

    Article  Google Scholar 

  75. W. Welch et al., Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. Chem. Biol. 3, 449–462 (1996)

    Article  Google Scholar 

  76. P.A. Buckley et al., Protein-protein recognition, hydride transfer and proton pumping in the transhydrogenase complex. Structure 8, 809–815 (2000)

    Article  Google Scholar 

  77. B.K. Shoichet et al., Lead discovery using molecular docking. Curr. Opin. Chem. Biol. 6, 439–446 (2002)

    Article  Google Scholar 

  78. H.-J. Böhm, M. Stahl, The use of scoring functions in drug discovery applications, in Reviews in Computational Chemistry, ed (Wiley, Inc., New York, 2003), pp. 41–87

    Google Scholar 

  79. H. Gohlke, G. Klebe, Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew. Chem. Int. Ed. Engl. 41, 2644–2676 (2002)

    Article  Google Scholar 

  80. H. Li et al., An effective docking strategy for virtual screening based on multi-objective optimization algorithm. BMC Bioinformatics 10, 58 (2009)

    Article  Google Scholar 

  81. P.S. Charifson et al., Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J. Med. Chem. 42, 5100–5109 (1999)

    Article  Google Scholar 

  82. R.D. Clark et al., Consensus scoring for ligand/protein interactions. J. Mol. Graph. Model. 20, 281–295 (2002)

    Article  Google Scholar 

  83. I.J. Enyedy, W.J. Egan, Can we use docking and scoring for hit-to-lead optimization? J. Comput. Aided Mol. Des. 22, 161–168 (2008)

    Google Scholar 

  84. T. Oprea, G. Marshall, Receptor-based prediction of binding affinities. Persp. Drug Discov. Des. 911, 35–61 (1998)

    Google Scholar 

  85. S. Betzi, et al., GFscore: a general nonlinear consensus scoring function for high-throughput docking. J. Chem. Inf. Model 46, 1704–1712 (2006)

    Google Scholar 

  86. M. Feher, Consensus scoring for protein-ligand interactions. Drug Discov. Today 11, 421–428 (2006)

    Article  Google Scholar 

  87. E. Perola, Minimizing false positives in kinase virtual screens. Proteins 64, 422–435 (2006)

    Article  Google Scholar 

  88. T.V. Pyrkov et al., Complementarity of hydrophobic properties in ATP-protein binding: a new criterion to rank docking solutions. Proteins 66, 388–398 (2007)

    Article  Google Scholar 

  89. V. Katritch, et al., Discovery of small molecule inhibitors of ubiquitin-like poxvirus proteinase I7L using homology modeling and covalent docking approaches. J. Comput. Aided Mol. Des. 21, 549–558 (2007)

    Google Scholar 

  90. G. Bianco, et al., Covalent docking using autodock: two-point attractor and flexible side chain methods. Protein Sci. (2015)

    Google Scholar 

  91. H.M. Kumalo et al., Theory and applications of covalent docking in drug discovery: merits and pitfalls. Molecules 20, 1984–2000 (2015)

    Article  Google Scholar 

  92. X. Fradera et al., Unsupervised guided docking of covalently bound ligands. J. Comput. Aided Mol. Des. 18, 635–650 (2004)

    Article  Google Scholar 

  93. L. Wang et al., Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J. Am. Chem. Soc. 137, 2695–2703 (2015)

    Article  Google Scholar 

  94. G.A. Ross, et al., One size does not fit all: the limits of structure-based models in drug discovery. J. Chem. Theory Comput. 9, 4266–4274 (2013)

    Google Scholar 

  95. E. Yuriev, et al., Challenges and advances in computational docking: 2009 in review. J. Mol. Recognit. 24, 149–164 (2011)

    Google Scholar 

  96. I.O. Donkor, Calpain inhibitors: a survey of compounds reported in the patent and scientific literature. Expert Opin. Ther. Pat. 21, 601–636 (2011)

    Article  Google Scholar 

  97. E. Perola et al., A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 56, 235–249 (2004)

    Article  Google Scholar 

  98. R.A. Friesner et al., Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47, 1739–1749 (2004)

    Article  Google Scholar 

  99. T. Schulz-Gasch, M. Stahl, Binding site characteristics in structure-based virtual screening: evaluation of current docking tools. J. Mol. Model. 9, 47–57 (2003)

    Google Scholar 

  100. A. Taube, Sensitivity, specificity and predictive values: a graphical approach. Stat. Med. 5, 585–591 (1986)

    Google Scholar 

  101. A. Agresti, Categorical data analysis, 2nd edn. (Wiley, Hoboken, 2002)

    Book  MATH  Google Scholar 

  102. N. Mantel, W. Haenszel, Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22, 719–748 (1959)

    Google Scholar 

  103. T. Fawcett, An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006)

    Article  Google Scholar 

  104. N.A. Obuchowski et al., ROC curves in clinical chemistry: uses, misuses, and possible solutions. Clin. Chem. 50, 1118–1125 (2004)

    Article  Google Scholar 

  105. W.J. Youden, Index for rating diagnostic tests. Cancer 3, 32–35 (1950)

    Article  Google Scholar 

  106. D. Hand, R. Till, A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach. Learn. 45, 171–186 (2001)

    Google Scholar 

  107. X. Robin et al., pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics 12, 77 (2011)

    Article  Google Scholar 

  108. D. Bohning et al., Revisiting Youden’s index as a useful measure of the misclassification error in meta-analysis of diagnostic studies. Stat. Methods Med. Res. 17, 543–554 (2008)

    Article  MathSciNet  Google Scholar 

  109. N. Novoselova et al., HUM calculator and HUM package for R: easy-to-use software tools for multicategory receiver operating characteristic analysis. Bioinformatics 30, 1635–1636 (2014)

    Article  Google Scholar 

  110. Z. Cai et al., Classification of lung cancer using ensemble-based feature selection and machine learning methods. Mol. BioSyst. 11, 791–800 (2015)

    Article  Google Scholar 

  111. J. Hu, et al., Comparison of three-dimensional ROC surfaces for clustered and correlated markers, with a proteomics application. Stat. Neerlandica, Wiley Online Library (2015)

    Google Scholar 

  112. B. Carstensen, et al. (2015). Epi: A Package for Statistical Analysis in Epidemiology. R package version 1.1.71. http://CRAN.R-project.org/package=Epi

  113. W. Venables, B. Ripley. (2015). nnet: Feed-forward neural networks and multinomial log-linear models. R package version 7.3-11. http://CRAN.R-project.org/package=nnet

  114. R Core Team. (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/

  115. C.N. Cavasotto, A.J. Orry, Ligand docking and structure-based virtual screening in drug discovery. Curr. Top. Med. Chem. 7, 1006–1014 (2007)

    Article  Google Scholar 

  116. C. McInnes, Virtual screening strategies in drug discovery. Curr. Opin. Chem. Biol. 11, 494–502 (2007)

    Article  Google Scholar 

  117. K.L. Mengersen, et al., Mixtures: Estimation and Applications, vol. 896 (Wiley, New York, 2011)

    Google Scholar 

  118. I.L. Hudson, et al., EMMIX skew classification of molecular ligand binding potency of calpain inhibitors. Mol. Inf. (in prep)

    Google Scholar 

  119. S. Lee, et al., Visualizing improved prognosis in psychiatric treatment via mixtures, SOMs and Chernoff faces, in Australian Statistical Conference, Adelaide, Australia, 2012, p. 131

    Google Scholar 

  120. I.L. Hudson, et al., Druggability in drug discovery: Self organising maps with a mixture discriminant approach, presented at the Austraian Statistical Conference, Adelaide, South Australia, 2012, p. 108

    Google Scholar 

  121. S.X. Lee, G.J. McLachlan, Model-based clustering and classification with non-normal mixture distributions. Stat. Methods Appl. 22, 427–454 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  122. S.X. Lee, G.J. McLachlan, On mixtures of skew-normal and skew t-distributions. Adv. Data Anal. Classif. 7, 241–266 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  123. S.X. Lee, G.J. McLachlan, EMMIX-uskew: An R package for fitting mixtures of multivariate skew t-distributions via the EM algorithm. J. Stat. Softw. 55, 1–22 (2013)

    Google Scholar 

  124. S. Lee, G.J. McLachlan, Finite mixtures of multivariate skew t-distributions: some recent and new results. Stat. Comput. 24, 181–202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  125. N. London et al., Covalent docking of large libraries for the discovery of chemical probes. Nat. Chem. Biol. 10, 1066–1072 (2014)

    Article  Google Scholar 

  126. X. Ouyang et al., CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. J. Comput. Chem. 34, 326–336 (2013)

    Article  Google Scholar 

  127. J. Polanski et al., Priveleged structures-dream or reality: preferential organization of azanaphthalene scaffold. Curr. Med. Chem. 19(13), 1921–1945 (2012)

    Article  Google Scholar 

  128. S.W. Kim, Bayesian and non-Bayesian mixture paradigms for clustering multivariate data: time series synchrony tests. PhD, University of South Australia, Adelaide, Australia (2011)

    Google Scholar 

  129. S. Zafar, et al., Linking ordinal log-linear models with correspondence analysis: an application to estimating drug-likeness in the drug discovery process, ed. by J. Piantadosi, R.S. Anderssen, J. Boland, MODSIM2013, in 20th International Congress on Modelling and Simulation (Modelling and Simulation Society of Australia and NZ, 2013), pp. 1945–1951. ISBN: 978-0-9872143-3-1. http://www.mssanz.org.au./modsim2013/I1/zafar.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Hudson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hudson, I.L., Leemaqz, S.Y., Neffe, A.T., Abell, A.D. (2016). Classifying Calpain Inhibitors for the Treatment of Cataracts: A Self Organising Map (SOM) ANN/KM Approach in Drug Discovery. In: Shanmuganathan, S., Samarasinghe, S. (eds) Artificial Neural Network Modelling. Studies in Computational Intelligence, vol 628. Springer, Cham. https://doi.org/10.1007/978-3-319-28495-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28495-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28493-4

  • Online ISBN: 978-3-319-28495-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics