Skip to main content

A Structure Optimization Algorithm of Neural Networks for Pattern Learning from Educational Data

  • Chapter
  • First Online:
Artificial Neural Network Modelling

Part of the book series: Studies in Computational Intelligence ((SCI,volume 628))

  • 7758 Accesses

Abstract

Digital technology integration is recognized as an important component in education reformation. Learning patterns of educators’ and students’ perceptions of, beliefs about and experiences in using digital technologies through self-reported questionnaire data is straightforward but difficult, due to the huge-volume, diversified and uncertain data. This chapter demonstrates the use of fuzzy concept representation and neural network to identify unique patterns via questionnaire questions. Fuzzy concept representation is used to quantify survey response and reform response using linguistic expression; while neural network is trained to learn the complex pattern among questionnaire data. Furthermore, to improve the learning performance of the neural network, a novel structure optimization algorithm based on sparse representation is introduced. The proposed algorithm minimizes the residual output error by selecting important neuron connection (weights) from the original structure. The efficiency of the proposed work is evaluated using a state-level student survey. Experimental results show that the proposed algorithm performs favorably compared to traditional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Chen, S. Lin, A neural network approach-decision neural network DNN for preference assessment. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 34(2), 219–225 (2004)

    Article  Google Scholar 

  2. A. Zaknich, Introduction to the modified probabilistic neural network for general signal processing applications. IEEE Trans. Signal Process. 46(7), 1980–1990 (1998)

    Article  Google Scholar 

  3. P. Thompson, The digital natives as learners: technology use patterns and approaches to learning. Comput. Educ. 65, 1233 (2013)

    Article  Google Scholar 

  4. A. Margaryan, A. Littlejohn, G. Vojt, Are digital natives a myth or reality? University students use of digital technologies. Comput. Educ. 56, 429440 (2011)

    Article  Google Scholar 

  5. Y.K. Baker, R. S, The state of educational data mining in 2009: a review and future visions. J. Educ. Data Mining 1, 317 (2009)

    Google Scholar 

  6. C. Romero, M.-I. Lpez, Luna, S. Comput. Educ. 68, 458472 (2013)

    Article  Google Scholar 

  7. S. Haykin, Neural networks: A Comprehensive Foundation (Prentice-Hall, Inc., New Jersey, 1999)

    Google Scholar 

  8. B. Hassibi, D.G. Stork, second-order derivatives for network pruning: optimal brain surgeon. Adv. Neural Inf. Process. Syst. 5, 164–171 (1993)

    Google Scholar 

  9. Y.L. Cun, J. Denker, S. Solla, Optimal brain damage. Adv. Neural Inf. Process. Syst 2, 598–605 (1990)

    Google Scholar 

  10. C. Kai, A. Noureldin, N. El-Sheimy, Constructive neural-networks-based MEMS/GPS integration scheme. IEEE Trans. Aerosp. Electron. Syst. 44(2), 582–594 (2008)

    Article  Google Scholar 

  11. H. Zheng, H. Wang, F. Azuaje, Improving pattern discovery and visualization of sage data through poisson-based self-adaptive neural networks. IEEE Trans. Inf Technol. Biomed. 12(4), 459–469 (2008)

    Article  Google Scholar 

  12. M. Islam, M. Sattar, M. Amin, X. Yao, K. Murase, A new constructive algorithm for architectural and functional adaptation of artificial neural networks. IEEE Trans. Syst. Man Cybern. B Cybern. 39(6), 1590–1605 (2009)

    Article  Google Scholar 

  13. M. Islam, A. Sattar, F. Amin, X. Yao, K. Murase, A new adaptive merging and growing algorithm for designing artificial neural networks. IEE Proc. Syst. Man Cybern. Part B: Cybern. 39(3), 705–722 (2009)

    Article  Google Scholar 

  14. M. Bortman, M. Aladjem, A growing and pruning method for radial basis function networks. IEEE Trans. Neural Netw. 20(6), 1039–1045 (2009)

    Article  Google Scholar 

  15. J. Haupt, R. Nowak, Signal reconstruction from noisy random projections. IEEE Trans. Inf. Theory 52(9), 4036–4048 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Rauhut, K. Schnass, P. Vandergheynst, Compressed sensing and redundant dictionaries. IEEE Trans. Inf. Theory 54(5), 2210–2219 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  18. J. Tropp, A. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications (Prentice-Hall, NJ, USA, 1995)

    MATH  Google Scholar 

  21. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Bustince, F. Herrera, J. Montero (Eds.), Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, vol. 220 Studies in Fuzziness and Soft Computing (Springer, Berlin, 2008)

    Google Scholar 

  23. C. Fourali, Using fuzzy logic in educational measurement: the case of portfolio assessment. Eval. Res. Educ. 11(3), 129 (1997)

    Article  Google Scholar 

  24. M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP algorithm, in IEEE International Joint Conference on Neural Networks (1993), pp. 586–591

    Google Scholar 

  25. J. Luo, C.-M. Vong, P.-K. Wong, Sparse bayesian extreme learning machine for multiclassification. IEEE Trans. Neural Netw. Learn. Syst. 25(4), 836–843 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, J., Ma, J., Howard, S.K. (2016). A Structure Optimization Algorithm of Neural Networks for Pattern Learning from Educational Data. In: Shanmuganathan, S., Samarasinghe, S. (eds) Artificial Neural Network Modelling. Studies in Computational Intelligence, vol 628. Springer, Cham. https://doi.org/10.1007/978-3-319-28495-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28495-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28493-4

  • Online ISBN: 978-3-319-28495-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics