Skip to main content

Construction of PMx Concentration Surfaces Using Neural Evolutionary Fuzzy Models of Type Semi Physical Class

  • Chapter
  • First Online:
Artificial Neural Network Modelling

Part of the book series: Studies in Computational Intelligence ((SCI,volume 628))

Abstract

Pollution by particulate matter (PMx) is the accumulation of tiny particles in the atmosphere due to natural or anthropogenic activities. Particulate matter becomes a pollutant that seriously affects the health of people. In order to reduce its concentration (PMx), understanding its behavior in space is necessary, overcoming both physical and mathematical limitations. Limitations here refer to little information that a set of monitoring stations provided with regard to air quality and with respect to the dynamics of a pollutant. Furthermore, to the effect that an emission source produces within a certain area (source apportionment). Therefore, this work proposes the development of a model for spatial analytical representation of PMx concentration over time as fuzzy information. The design of the model is inspired by the structure of a Self-Organizing Map (SOM). The model consists of an input layer (n_sources) and an output layer (m_stations) that were determined in shape and size for the study area. Connections between layers are defined by a Lagrangian backward Gaussian puff tracking model, which depend on the meteorological dynamics of the area. The model allows the estimation of emissions in n_sources, based on the measurement of (PMx) concentration in the m_stations that were considered. The connection weights are adjusted by using evolutionary algorithms. The model showed a series of analytical forecasting maps that describe the spatial temporal behavior of PMx concentration in terms of the puffs emitted by n_sources. The result is a spatial neural evolutionary fuzzy model of type semi-physical class. Its application can support the improvement of air quality in an study area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EEA European Environmental Agency, Air Pollution in Europe 1990–2004, European Report (EEA—European Environmental Agency, Brueles, Europe, 2007)

    Google Scholar 

  2. B. Brunekreef, S. Holgate, Air pollution in health. Lancet 360(9341), 1233–1242 (2002)

    Article  Google Scholar 

  3. D. Dockery, C. pope, X. Xu, J. Spengler, J. Ware, J. Fay and E. Speizer, An association betwenn air pollution and mortality in six U.S. cities. N. Engl. J. Med. 329(24), 1753–1759 (1993)

    Google Scholar 

  4. C. Pope, D. Dockery, J. Shwartz, Review of epidemiological evidence of health effects of particulate air pollution. Inhal. Toxicol. 7, 1–18 (1995)

    Article  Google Scholar 

  5. D. Loomis, Y. Grosse, B. Lauby-Secretan, F.E. Chisssassi, V. Bouvard, T. Benbrahim, N. Guha, R. Baan, H. Mattock and S. Straif, The carcinogenity of outdoor air pollution. Lancet Oncol. 14(13), 1262–1263 (2013)

    Google Scholar 

  6. R. Beelem, G. Hoek, D. Vienneau, M. Eeftens, K. Dimakoupolou, X. Pedeli, Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe—the ESCAPE project. Atmos. Environ. 72, 16–23 (2013)

    Google Scholar 

  7. P.A. Peña, J.A. Hernández, V.M. Toro, Evolutionary inverse lagrangian puff model. Environ. Model. Softw. 25(12), 1890–1893 (2010a)

    Google Scholar 

  8. P.A. Peña, J.A. Hernández, V.M. Toro, Evolutionary inverse modelling for PM10 polltutant dispersion, in Soft Computing Methods for Practical Environmental Solutions: Techniques and Studies (IGI-Global, 2010b), pp. 293–313

    Google Scholar 

  9. R. Stern, P. Builtjes, M. Shaap, R. Timmermans, R. Vautard, A. Hodzic, M. Memmesheimer, H. Fldmann, E. Renner, R. Wolke, A. Kerschbaumer, A model inter-comparison study focussing on epiodes with elevated Pm10 concentrations. Atmos. Environ. 42(19), 4567–4588 (2008)

    Article  Google Scholar 

  10. M. Brauer, M. Ammann, R. Burnett, A. Cohen, F. Dentener, M. Ezzati, S. Henderson, M. Krzyzanowski, R. Martin, R. Van Dingenen, A. Van Donkelaar, G. Thurston, Exposure assessment for estimation of the global durden of desease attributable to outdoor air pollution. Environ. Sci. Technol. 46(2), 652–660 (2011)

    Article  Google Scholar 

  11. C. Lloyd, P. Atkinson, Increased accuracy of geostatistical prediction of nitrogen dioxide in the United Kingdom with secondary data. Int. J. Appl. Earth Obs. Geoinf. 5(4), 293–305 (2004)

    Article  Google Scholar 

  12. N. Hamm, A. Finley, M. Shaap, A. Stein, A spatially varying coefficient model for mapping PM10 air quality at European Scale. Atmos. Environ. 102, 393–405 (2015)

    Article  Google Scholar 

  13. R. Givehchi, M. Arhami, M. Tajrishy, Contribution of the middle eastern dust source areas to PM10 levels in urban receptors: case study of Theran, Iran. Atmos. Environ. 75, 287–295 (2013)

    Article  Google Scholar 

  14. C. Yiu-Chung, O. Hawas, D. Hawker, P. Vowles, D. Cohen, E. Stelcer, R. Simpson, G. Golding, E. Christensen, Using multiple type composition data and wind data in PMF analysis to apportion and locate sources of air pollutants. Atmos. Environ. 45, 439–449 (2011)

    Article  Google Scholar 

  15. G. Argyropoulos, C. Samara, Development and application of a robotic chemical mass balance model for source apportionment of atmospheric particulate matter. Environ. Model Softw. 26, 469–481 (2011)

    Article  Google Scholar 

  16. M. Adewale, M. Taiwo, R. Harrison, S. Zongbo, A review of receptor modelling of industrially emitted particulate matter. Atmos. Environ. 97, 109–120 (2014)

    Article  Google Scholar 

  17. J. de la Rosa, A. Sánchez, A. Alastuey, X. Querol, Y. Gonzalez-Castanedo, R. Fernández-Camacho, A. Stein, Using PM10 geochemical maps for defining the origin of atmospheric pollution in Andalusia (southern Spain). Atmos. Environ. 44, 4595–4605 (2010)

    Article  Google Scholar 

  18. E. Pisoni, C. Carnevale, M. Volta, Sensitivity to spatial resolution of modeling systems designing air quality control policies. Environ. Model. Softw. 25, 66–73 (2010)

    Article  Google Scholar 

  19. V. Singh, C. Carnevale, G. Finzi, E. Pisoni, M. Volta, A cokriging based approach to reconstruct air pollution mpas, processing measurement station concentrations and deterministic model simulations, Environ. Model. Softw. 26, 778–786 (2011)

    Google Scholar 

  20. K. Strebel, G. Espinosa, F. Giralt, A. Kindler, R. Rallo, M. Richter, U. Schlink, Modelling airborne benzene in space an time with self organizing maps and Bayesian techniques. Environ. Model Softw. 41, 151–162 (2013)

    Article  Google Scholar 

  21. M. Elangasinghe, N. Singhal, K. Dirks, J. Salmond, S. Samarasinghe, Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modelling and k-means clustering. Atmos. Environ. 94, 106–116 (2014)

    Article  Google Scholar 

  22. M. Diaz de Quijano, D. Joly, D. Gilbert, N. Bernard, A more cost effective geomatic approach to modelling PM10 dispersion across Europe. Appl. Geogr. 55, 108–116 (2014)

    Article  Google Scholar 

  23. F. Pilla, B. Broderick, A GIS model for personal exposure to PM10 for Dublin commuters, Sustain. Cities Soc. 15, 1–10 (2015)

    Google Scholar 

  24. P. Isazi, Redes de Neuronas Artificiales—Un enfoque práctico (2004)

    Google Scholar 

  25. C. Coello, Introduccion a la Computación Evolutiva, Centro de Investigacones y Estudios Avanzados - CINVESTAV, delta.cs.cinvestav.mx/~ coello/comevol/apuntes.pdf.gz, 2014

    Google Scholar 

  26. P. Israelsson, K. Do, E. Adams, A comparison of three lagrangian approaches for extending near field mixing calculations. Environ. Model Softw. 21, 1631–1649 (2006). doi:10.1016/j.envsoft.2005.07.008

    Article  Google Scholar 

  27. P.A. Peña, R.J. Hernández, EDA’s classfier systems for identifying patterns of particulate matter (PMx) dispersion in a Study Area, in Lagrangran Modelling of the Atmmosphere (Grindelwald, Switzerland, 2011)

    Google Scholar 

  28. F. Martín Ll., C. Gonzalez and I. e. a. Palomino, SICAH, Sistema Informático para el Control y Prevención de la Contaminación Atmósferica en Huelva, Madrid: Centro de Investigaciones Energeticas, Medioambientales y Tecnológicas, CIEMAT (2002)

    Google Scholar 

  29. J. Scire, F. Robe, M. Fernan, R. Yamartino, A useros guide for the CALMET/CALPUFF model (versión 5.0), (Earth Tech. Inc., Concord, 2000)

    Google Scholar 

  30. P. Larrañaga, P. Lozano, Estimation of Distribution Algorithms (Kluwer, Massachissetts, 2002)

    Book  MATH  Google Scholar 

  31. J. Lozano, P. Larrañaga, E. Bengoetxea, Towards a new evolutionary computation: advances on estimation of distribution algorithms. (Springer, 2006)

    Google Scholar 

  32. J. Hernández, J. Ospina, A multi dynamics algorithm for global optimization, Math. Comput. Model. 52(7), 1271–1278 (2010). doi: 10.1016/j.mcm.2010.03.024

  33. P.A. Peña, R.J. Hernández, Compression of Free Surfaces Base on the Evolutionary Optimization of a NURBS—Takagi Sugeno, in 23rd. ISPE International Conference on CAD/CAM, Robotics & Factories of the Future (Bogota, 2007b), ISBN: 978-958-978-597-3

    Google Scholar 

  34. P.A. Peña, R.J. Hernández, C. Parra, Modelo Evolutivo Integrado para la Interpolación/Descomposición de Modelos DIgitales de Elevación, in 2da. Conferencia Ibérica de Sitemas y Tecnologías de la Información (Oporto, Portugal, 2007a), ISBN:978-972-8830-88-5

    Google Scholar 

  35. P.A. Peña, R.J. Hernández, P.R. Jímenez, Construction of Concentration Surfaces PMx using Fuzzy Neural models of Semiphysical Class, in Spatial Statistics (Columbus, Ohio, 2013)

    Google Scholar 

  36. O.-H. Park, M.-G. Seok, Selection of appropiate model to predict plume dispersion in coastal areas. Atmos. Environ. 41, 6095–6101 (2007). doi:10.1016/j.atmosenv.2007.04.010

    Article  Google Scholar 

  37. P.A. Peña, R.J. Hernández, M. Toro, Asynchronous evolutionary modelling for PM10 spatial characterization, in Proceedings of the 18th. World IMACS Congess and MODSIM 09 International Congress on Modelling and Simulations (Sidney, Australia, 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Peña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peña, A., Hernández, J.A. (2016). Construction of PMx Concentration Surfaces Using Neural Evolutionary Fuzzy Models of Type Semi Physical Class. In: Shanmuganathan, S., Samarasinghe, S. (eds) Artificial Neural Network Modelling. Studies in Computational Intelligence, vol 628. Springer, Cham. https://doi.org/10.1007/978-3-319-28495-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28495-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28493-4

  • Online ISBN: 978-3-319-28495-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics