Skip to main content

A Neural Approach to Electricity Demand Forecasting

  • Chapter
  • First Online:
Artificial Neural Network Modelling

Part of the book series: Studies in Computational Intelligence ((SCI,volume 628))

Abstract

Electricity demand forecasting is significant in supply-demand management, service provisioning, and quality. This chapter introduces a short-term load forecasting model using Fuzzy Cognitive Map, a popular neural computation technique. The historic data of intraday load levels are mapped to network nodes while a differential Hebbian technique is used to train the network’s adjacency matrix. The inferred knowledge over weekly training window is then used for demand projection with Mean Absolute Percentage Error (MAPE) of 5.87 % for 12 h lead time, and 8.32 % for 24 h lead time. A Principal Component Analysis is also discussed to extend the model for training using big data, and to facilitate long-term load forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Abraham, B. Nath, A neuro-fuzzy approach for modelling electricity demand in Victoria. Appl. Soft Comput. 1(2), 127–138 (2001)

    Article  Google Scholar 

  2. H. Liao, D. Niebur, Exploring independent component analysis for electric load profiling, in IJCNN ‘02. Proceedings of the 2002 International Joint Conference on Neural Networks, vol. 3 (2002), pp. 2144–2149

    Google Scholar 

  3. C.-H. Wang, G. Grozev, S. Seo, Decomposition and statistical analysis for regional electricity demand forecasting. Energy 41(1), 313–325 (2012)

    Google Scholar 

  4. AEMO, Australian Energy Market Operator’s Historical demand. (AEMO Web, 2013), http://www.nemweb.com.au/REPORTS/Archive/HistDemand/. Accessed 27 Oct 2013

  5. L. Hernández, C. Baladrón, J.M. Aguiar, L. Calavia, B. Carro, A study of the relationship between weather variables and electric power demand inside a smart grid. Sensors 12, 11571–11591 (2012)

    Article  Google Scholar 

  6. K. Pilli-Sihvola, P. Aatola, M. Ollikainen, H. Tuomenvirta, Climate change and electric power consumption—witnessing increasing or decreasing use and costs? Energy Policy 38, 2409–2419 (2010)

    Article  Google Scholar 

  7. Y. Messaoud, H.Y.H. Chen, D.Q. Fuller, The influence of recent climate change on tree height growth differs with species and spatial environment. PLoS One 6, e14691 (2011)

    Article  Google Scholar 

  8. S. Parkpoom, G.P. Harrison, Analyzing the impact of climate change on future electric demandin Thailand. IEEE Trans. Power Syst. 23, 1441–1448 (2008)

    Article  Google Scholar 

  9. U. Wilke, F. Haldi, J.-L. Scartezzini, D. Robinson, A bottom-up stochastic model to predict building occupants’ time-dependent activities. Build. Environ. 60, 254–264 (2013)

    Google Scholar 

  10. U. Wilke, Probabilistic bottom-up modelling of occupancy and activities to predict electricity demand in residential buildings, thesis, Solar Energy and Building Physics Laboratory, EPFL, Switzerland (2013)

    Google Scholar 

  11. H. Wilhite, A socio-cultural analysis of changing household electricity consumption in india, in Tackling Long Term Global Energy Problems, Environment and Policy, ed. by D. Spreng, T. Flüeler, D.L. Goldblatt, J. Minsch (Springer, Dordrecht, 2012), pp. 97–113

    Chapter  Google Scholar 

  12. Z. Atakhanova, P. Howie, Electricity demand in Kazakhstan. Energy Policy 35(7), 3729–3743 (2007)

    Article  Google Scholar 

  13. V. Bianco, O. Manca, S. Nardini, Electricity consumption forecasting in Italy using linear regression models. Energy 34(9), 1413–1421 (2009)

    Google Scholar 

  14. A. Shiu, P.-L. Lam, Electricity consumption and economic growth in China. Energy Policy 32(1), 47–54 (2004)

    Article  Google Scholar 

  15. M. Filippini, Swiss residential demand for electricity by time-of-use. Resour. Energy Econ. 17(3), 281–290 (1995)

    Article  Google Scholar 

  16. J.M. Griffin, the effects of higher prices on electricity consumption. Bell J. Econ. 5(2), 515–539 (1974). The RAND Corporation

    Article  Google Scholar 

  17. J.A. Espey, M. Espey, Turning on the lights: a meta-analysis of residential electricity demand elasticities. J. Agric. Appl. Econ. 36(1), 65–81 (2004)

    Article  Google Scholar 

  18. M.J. Thatcher, Modelling changes to electricity demand load duration curves as a consequence of predicted climate change for Australia. Energy 32, 1647–1659 (2007)

    Article  Google Scholar 

  19. J. Moral-Carcedo, J. Vicéns-Otero, Modelling the non-linear response of Spanish electricity demand to temperature variations. Energy Econ. 27(3), 477–494 (2005)

    Google Scholar 

  20. D.J. Sailor, J.R. Munoz, Sensitivity of electricity and natural gas consumption to climate in the USA—methodology and results for eight states. Energy 22, 987–998 (1997)

    Article  Google Scholar 

  21. D.J. Sailor, Relating residential and commercial sector electricity loads to climate—evaluating state level sensitivities and vulnerabilities. Energy 26, 645–657 (2001)

    Article  Google Scholar 

  22. R. Steadman, A universal expression of apparent temperature. J. Appl. Meteorol. 23, 1674–1687 (1984)

    Article  Google Scholar 

  23. A. Harveya, S.J. Koopmana, Forecasting hourly electricity demand using time-varying splines. J. Am. Stat. Assoc. 88, 424 (1993)

    Google Scholar 

  24. R. Cottet, M. Smith, Bayesian modeling and forecasting of intraday electricity load. J. Am. Stat. Assoc. 98(464), 839–849 (2003)

    Article  MathSciNet  Google Scholar 

  25. A.W.L. Yao, S.C. Chi, J.H. Chen, An improved grey-based approach for electricity demand forecasting. Electr. Power Sys. Res. 67(3), 217–224 (2013)

    Google Scholar 

  26. J.T. Connor, A robust neural network filter for electricity demand prediction. J. Forecast. 15(6), 437–458 (1996)

    Article  Google Scholar 

  27. G.A. Darbellay, M. Slama, Forecasting the short-term demand for electricity: do neural networks stand a better chance? Int. J. Forecast. 16(1), 71–83 (2000)

    Article  Google Scholar 

  28. T. Al-Saba, I. El-Amin, Artificial neural networks as applied to long-term demand forecasting, Artif. Intell. Eng. 13(2), 189–197 (1999)

    Google Scholar 

  29. P.-F. Pai, W.-C. Hong, Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms. Electr. Power Syst. Res. 74(3), 417–425 (2005)

    Google Scholar 

  30. W. Bartkiewicz, Neuro-fuzzy approaches to short-term electrical load forecasting, in Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, vol. 6 (2000), pp. 229–234

    Google Scholar 

  31. P.-C., Chang, C.-Y. Fan, J.-J. Lin, Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach. Int. J. Electr. Power Energy Syst. 33(1), 17–27 (2011)

    Google Scholar 

  32. S. Roychowdhury, Fuzzy curve fitting using least square principles, in IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, Oct 1998 (1998), pp. 4022–4027

    Google Scholar 

  33. K.H. Kim, J.K. Park, K.J. Hwang, S.H. Kim, Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems. IEEE Trans. Power Syst. 10, 1534–1539 (1995)

    Article  Google Scholar 

  34. O. Motlagh, Z. Jamaludin, S.H. Tang, W. Khaksar, An agile FCM for real-time modeling of dynamic and real-life systems. Evolving Syst.: Spec. Issue Temporal Aspects Fuzzy Cogn. Maps (2013)

    Google Scholar 

  35. G. Zhang, B.E. Patuwo, M.Y. Hu, Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14, 35–62 (1998)

    Article  Google Scholar 

  36. M.R. Khan, Č. Ondrůšek, The hopfield model for short-term load prediction, in 2nd Spring International Power Engineering Conference, UVEE, FEI, Brno University of Technology, Czech Republic (2001), pp. 81–85

    Google Scholar 

  37. O. Motlagh, S.H. Tang, W. Khaksar, N. Ismail, An alternative approach to FCM activation for modeling dynamic systems. Appl. Artif. Intell. 26(8), 733–742 (2012)

    Article  Google Scholar 

  38. G.K.F. Tso, K.K.W. Yau, Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks. Energy 32(9), 1761–1768 (2007)

    Article  Google Scholar 

  39. J.W. Taylor, L.M. De Menezes, P.E. McSharry, A comparison of univariate methods for forecasting electricity demand up to a day ahead. Int. J. Forecast. 22(1), 1–16 (2006)

    Google Scholar 

  40. O.G. Santin, Behavioural patterns and user profiles related to energy consumption for heating. Energy Build. 43(10), 2662–2672 (2011)

    Article  Google Scholar 

  41. J.V. Ringwood, D. Bofelli, F.T. Murray, Forecasting electricity demand on short, medium and long time scales using neural networks. J. Intell. Rob. Syst. 31(1–3), 129–147 (2001)

    Article  MATH  Google Scholar 

  42. K. Kandananond, Forecasting electricity demand in thailand with an artificial neural network approach. Energies 4, 1246–1257 (2011)

    Article  Google Scholar 

  43. O. Motlagh, S.H. Tang, M.N. Maslan, F.A. Jafar, M.A. Aziz, A novel graph computation technique for multi-dimensional curve fitting. Connection Sci. 25(2–3), 129–138 (2013)

    Google Scholar 

  44. D.O. Hebb, The Organization of Behavior: A Neuropsychological Theory (Wiley, New York, 1949)

    Google Scholar 

  45. M. Negnevitsky, Artificial intelligence:a guide to intelligent systems (Pearson Education Ltd, England, 2005)

    Google Scholar 

  46. J.A. Dickerson, B. Kosko, Virtual worlds as fuzzy cognitive maps. Presence 3(2), 173–189 (1994)

    Article  Google Scholar 

  47. A. Vazquez, A balanced differential learning algorithm in fuzzy cognitive maps, Technical report, Departament de Lenguatges I Sistemes Informatics, Universitat Politecnica de Catalunya (UPC) (2002)

    Google Scholar 

  48. E.I. Papageorgiou, C.D. Stylios, P.P. Groumpos, Fuzzy cognitive map learning based on nonlinear Hebbian rule, in Australian Conference on Artificial Intelligence (2003), pp. 256–268

    Google Scholar 

  49. E.I. Papageorgiou, C.D. Stylios, P.P. Groumpos, Active Hebbian learning algorithm to train fuzzy cognitive maps. Int. J. Approx. Reason. 37(3), 219–247 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. S. Soleymani, A.M. Ranjbar, A.R. Shirani, A new structure for electricity market scheduling power electronics, in PEDES International Conference on Drives and Energy Systems (2006), pp. 1–5

    Google Scholar 

  51. A.J. Conejo, J.M. Morales, L. Baringo, Real-time demand response model. IEEE Trans. Smart Grid 1(3), 236–242 (2010)

    Article  Google Scholar 

  52. S.S. Pappas, L. Ekonomou, D.C. Karamousantas, G.E. Chatzarakis, S.K. Katsikas, P. Liatsis, Electricity demand loads modeling using Auto-Regressive Moving Average (ARMA) models. Energy 33(9), 1353–1360 (2008)

    Google Scholar 

  53. S.S. Pappas, L. Ekonomou, P. Karampelas, D.C. Karamousantas, S.K. Katsikas, G.E. Chatzarakis, P.D. Skafidas, Electricity demand load forecasting of the Hellenic power system using an ARMA model. Electric Power Syst. Res. 80(3), 256–264 (2010)

    Google Scholar 

  54. E. Erdogdu, Electricity demand analysis using cointegration and ARIMA modelling: a case study of Turkey. Energy Policy 35(2), 1129–1146 (2007)

    Article  Google Scholar 

  55. J.W. Taylor, Short-term electricity demand forecasting using double seasonal exponential smoothing. J. Oper. Res. Soc. 54, 799–805 (2003)

    Google Scholar 

  56. H.S. Hippert, D.W. Bunn, R.C. Souza, Large neural networks for electricity load forecasting: are they overfitted? Int. J. Forecast. 21(3), 425–434 (2005)

    Google Scholar 

  57. V. Gogate, R. Dechter, B. Bidyuk, C. Rindt, J. Marca, Modeling transportation routines using hybrid dynamic mixed networks, in Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence (UAI2005) (2005), pp. 217–224

    Google Scholar 

  58. AEMO, Australian Energy Market Operator’s. (AEMO Website, 2013), http://www.aemo.com.au/Electricity/Data/Forecast-Supply-and-Demand/7-Day-Outlook. Accessed 13 Dec 2013

  59. S. Howden, S. Crimp, Effect of climate and climate change on electricity demand, in Modsim 2001 International congress on modelling and simulation (2000), pp. 655–660

    Google Scholar 

  60. AEMO, Australian Energy Market Operator’s pre-dispatch demand forecasting for August 2013, published 2 September 2013. (AEMO Website, 2013b), http://www.aemo.com.au/Electricity/Data/PreDispatch-Demand-Fore-casting-Performance. Accessed 9 Dec 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Motlagh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Motlagh, O., Grozev, G., Papageorgiou, E.I. (2016). A Neural Approach to Electricity Demand Forecasting. In: Shanmuganathan, S., Samarasinghe, S. (eds) Artificial Neural Network Modelling. Studies in Computational Intelligence, vol 628. Springer, Cham. https://doi.org/10.1007/978-3-319-28495-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28495-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28493-4

  • Online ISBN: 978-3-319-28495-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics