Skip to main content

Stochastic Optimization for Process Intensification

  • Chapter
  • First Online:
Process Intensification in Chemical Engineering

Abstract

This chapter describes and discusses stochastic optimization methods for solving problems involved in process intensification, given an emphasis in multiobjective optimization due to its increasing importance in the chemical engineering community. A brief description of the multiobjective optimization strategies such as genetic algorithms, simulated annealing, tabu search, differential evolution, ant colony and particle swarm optimization is provided, including several applications of evolutionary optimization methods in the intensification of separation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rangaiah GP (ed) (2009) Multi-objective optimization: techniques and applications in chemical engineering. World Scientific, Singapore

    Google Scholar 

  2. Rangaiah GP (ed) (2010) Stochastic global optimization: techniques and applications in chemical engineering. World Scientific, Singapore

    Google Scholar 

  3. Rangaiah GP, Bonilla-Petriciolet A (eds) (2013) Multi-objective optimization in chemical engineering: developments and applications. Wiley, Chichester

    Google Scholar 

  4. Coello-Coello CA (2005) Evolutionary multiobjective optimization: current state and future challenges. In: Proceedings of the fifth international conference on hybrid intelligent systems, 0-7695-2457-5/05, IEEE

    Google Scholar 

  5. Mezura-Montes E (2001) Uso de la técnica multiobjetivo NPGA para el manejo de restricciones en Algoritmos Genéticos. Maestría en Inteligencia Artificial, Thesis, Universidad Veracruzana

    Google Scholar 

  6. Edgeworth FY (1881) Mathematical physics. P. Keagan, London

    Google Scholar 

  7. Pareto V (1896) Cours D’economie Politique, vol I, II. F. Rouge, Lausanne

    Google Scholar 

  8. Croicu AM (2005) Single and multiple-objective stochastic programming models with application to aerodynamics. Electronic theses, treatises and dissertations, paper 3027

    Google Scholar 

  9. Caramia M, Dell’Olmo P (2008) Multi-objective management in freight logistics increasing capacity, service level and safety with optimization algorithms. Springer, New York

    Google Scholar 

  10. Chankong V, Haimes YY (1983) Multiobjective decision making theory and methodology. Elsevier, New York

    Google Scholar 

  11. Sarkar D, Modak JM (2005) Pareto-optimal solutions for multiobjective optimization of fed-batch bioreactors using nondominated sorting genetic algorithm. Chem Eng Sci 60(2):481–492

    Article  CAS  Google Scholar 

  12. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester

    Google Scholar 

  13. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  14. Bhaskar V, Gupt, SK, Ray AK (2000) Application of multiobjective optimization in chemical engineering, National University of Singapore

    Google Scholar 

  15. Schaffer JD (1985) Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic algorithms and their applications: proceedings of the first international conference on genetic algorithms. Lawrence Erlbaum, London, pp 93–100

    Google Scholar 

  16. Fonseca CM, Fleming PJ (1993) Genetic algorithms for multi-objective optimization: formulation, discussion and generalization. In: Forrest S (ed) Proceedings of the fifth international conference on genetic algorithms. University of Illinois at Urbana-Champaign, Morgan Kauffman, Los Altos, pp 416–423

    Google Scholar 

  17. Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221–248

    Article  Google Scholar 

  18. Horn J, Nafpliotis N (1993) Multiobjective optimization using the niched pareto genetic algorithm. Technical report IlliGAL report 93005, University of Illinois at Urbana Champaign, Urbana

    Google Scholar 

  19. Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multiobjective-optimization: NSGA-II, KanGAL report 200001. Indian Institute of Technology, Kanpur

    Google Scholar 

  20. Coello Coello CA, Toscano Pulido G (2001a) A micro-genetic algorithm for multiobjective optimization. In: Zitzler E, Deb K, Thiele L, Coello Coello CA, Corne D (eds) First international conference on evolutionary multi-criterion optimization (Lecture notes in computer science no. 1993). Springer, Berlin, pp 126–140

    Google Scholar 

  21. Coello Coello CA, Toscano Pulido G (2001b) Multiobjective optimization using a micro-genetic algorithm. In: Lee S, Goodman ED, Wu A, Langdon WB, Voigt H-M, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon MH, Burke E (eds) Proceedings of the genetic and evolutionary computation conference (GECCO’2001). Morgan Kaufmann, San Francisco, pp 274–282

    Google Scholar 

  22. Coello Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems, 2nd edn. Springer, New York

    Google Scholar 

  23. Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inform Sci 237:82–117

    Article  Google Scholar 

  24. Metropolis N, Rosenbluth A, Roseblunth M, Teller A, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  CAS  Google Scholar 

  25. Kirkpatrick S, Gellatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  CAS  Google Scholar 

  26. Cerny V (1985) A thermodynamic approach to the traveling salesman problem: an efficient simulation algorithm. J Optimiz Theory Appl 45(1):41–51

    Article  Google Scholar 

  27. Serafini P (1994) Simulated annealing for multiple objective optimization problems. In: Tzeng G, Wang H, Wen U, Yu P (eds) Proceedings of the tenth international conference on multiple criteria decision making: expand and enrich the domains of thinking and application, vol 1. Springer, New York, pp 283–292

    Google Scholar 

  28. Ulungu E (1993) Optimisation Combinatoire multicritere: Determination de l’ensemble des soltions efficacies et methods interactives. PhD thesis, Faculté des Sciences, Université de Mons-Hainaut, Mons

    Google Scholar 

  29. Ulungu E, Teghem J, Fortemps P (1995) Heuristics for multi-objective combinatorial optimization by simulated annealing. In: Gu J, Chen G, Wei Q, Wang S (eds) Multiple criteria decision making: theory and applications. Proceedings of the 6th national conference on multiple criteria decision making. Sci-Tech, Windsor, pp 228–238

    Google Scholar 

  30. Ulungu E, Teghem J, Fortemps P, Tuyttens D (1999) MOSA method: a tool for solving multiobjective combinatorial optimization problems. J Multi Crit Decis Anal 8(4):221–236

    Article  Google Scholar 

  31. Ulungu E, Teghem J, Ost C (1998) Efficiency of interactive multi-objective simulated annealing through a case study. J Oper Res Soc 49:1044–1050

    Article  Google Scholar 

  32. Ray T, Gokarn R, Sha O (1995) A global optimization model for ship design. Comput Ind 26:175–192

    Article  Google Scholar 

  33. Czyzag P, Jaszkiewicz A (1997) Pareto simulated annealing. In: Fandel G, Gal T (eds) Multiple criteria decision making. Proceedings of the XIIth international conference. Springer, Hagen, pp 297–307

    Chapter  Google Scholar 

  34. Czyzag P, Jaszkiewicz A (1998) Pareto simulated annealing—a metaheuristic technique for multi-objective combinatorial optimization. A thermodynamic approach to the traveling salesman problem: an efficient simulation algorithm. J Multi Crit Decis Anal 7:34–47

    Article  Google Scholar 

  35. Ruiz-Torres AJ, Enscore EE, Barton RR (1997) Simulated annealing heuristics for the average flow-time and the number of tardy jobs bi-criteria identical parallel machine problem. Comput Ind Eng 33(1–2):257–260

    Article  Google Scholar 

  36. Nam D, Park CH (2000) Multiobjective simulated annealing: a comparative study to evolutionary algorithms. Int J Fuzzy Syst 2(2):87–97

    Google Scholar 

  37. Hansen MP (1997) Generating a diversity of good solutions to a practical combinatorial problem using vectorized simulated annealing. Technical report. Institute of Mathematical Modelling, Technical University of Denmark

    Google Scholar 

  38. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper 13(5):533–549

    Article  Google Scholar 

  39. Gandibleux X, Mezdaoui N, Fréville A (1997) A tabu search procedure to solve combinatorial optimization problems. In: Caballero R, Ruiz F, Steuer RE (eds) Advances in multiple objective and goal programming, vol 455. Springer, New York, pp 291–300

    Chapter  Google Scholar 

  40. Hansen MP (1998) Tabu search in multiobjective optimization: MOTS. In: Proceedings of the 13th international conference on multiple criteria decisions making, Cape Town, South Africa

    Google Scholar 

  41. Hansen M (2000) Tabu search for multiobjective combinatorial optimization: TAMOCO. Control Cybernet 29(3):799–818

    Google Scholar 

  42. Hertz A, Jaumard B, Ribeiro C, Filho WF (1994) A multi-criteria tabu search approach to cell formation problems in group technology with multiple objectives. RAIRO/Oper Res 28(3):303–328

    Google Scholar 

  43. Baykasoğlu A (2001) Goal programming using multiple-objective tabu search. J Oper Res Soc 52(12):1359–1369

    Article  Google Scholar 

  44. Baykasoğlu A, Owen S, Gindy N (1999) A taboo search based approach to find the Pareto optimal set in multiple objective optimization. Eng Optim 31(6):731–748

    Article  Google Scholar 

  45. Ho S, Yang S, Ni G, Wong H (2002) A tabu method to find the Pareto solutions of multiobjective optimal design problems in electromagnetics. IEEE Trans Magn 38(2):1013–1016

    Article  Google Scholar 

  46. Jaeggi D, Asselin-Millerm C, Parks G, Kipouros T, Bell T, Clarkson J (2004) Multi-objective parallel tabu search. In: Parallel problem solving from nature (Lecture notes in computer science), vol 3242. Springer, New York, pp 732–741

    Google Scholar 

  47. Kulturel-Konak S, Smith AE, Norman BA (2006) Multi-objective tabu search using a multinomial probability mass function. Eur J Oper Res 169:918–931

    Article  Google Scholar 

  48. Xu J, Sohoni M, McCleery M, Bailey TG (2006) A dynamic neighborhood based tabu search algorithm for real-world flight instructor scheduling problems. Eur J Oper Res 169:978–993

    Article  Google Scholar 

  49. Dorigo M, Caro GD (1999) The ant colony optimization metaheuristic. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, New York

    Google Scholar 

  50. Colorni A, Dorigo M, Maniezzo V (1992) Distributed optimization by ant colonies. In: Varela FJ, Bourgine P (eds) Proceedings of the first European conference on artificial life. MIT, Cambridge, pp 134–142

    Google Scholar 

  51. Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybernet Part B 26(1):29–41

    Article  CAS  Google Scholar 

  52. Dorigo M, Stützle T (2004) Ant colony optimization. MIT, Cambridge

    Book  Google Scholar 

  53. Gambardella LM, Dorigo M (1995) Ant-Q: a reinforcement learning approach to the travelling salesman problem. In: Prieditis A, Russell S (eds) Proceedings of the 12th international conference on machine learning. Morgan Kaufmann, San Francisco, pp 252–260

    Google Scholar 

  54. Mariano CE, Morales E (1999) MOAQ an ant-Q algorithm for multiple objective optimization problems. In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith RE (eds) Genetic and evolutionary computing conference, vol 1. Morgan Kaufmann, San Francisco, pp 894–901

    Google Scholar 

  55. Mariano CE, Morales E (1999b) A multiple objective ant-Q algorithm for the design of water distribution irrigation networks. Technical Report HC-9904, Instituto Mexicano de Tecnología del Agua

    Google Scholar 

  56. Gambardella LM, Taillard É, Agazzi G (1999) MACS-VRPTW: a multiple ant colony system for vehicle routing problems with the time windows. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimization. McGraw-Hill, New York, pp 63–76

    Google Scholar 

  57. Iredi S, Merkle D, Middendorf M (2001) Bi-criterion optimization with multi colony ant algorithms. In: Zitzler E, Deb K, Thiele L, Coello Coello CA, Corne D (eds) First international conference on evolutionary multi-criterion optimization (Lecture notes in computer science no. 1993). Springer, Berlin, pp 358–372

    Google Scholar 

  58. Gagné C, Gravel M, Price WL (2000) Scheduling a single machine where set up times are sequence dependent using an ant colony heuristic. In: Abstract proceedings of ANTS’2000, pp 157–160

    Google Scholar 

  59. Gagné C, Price WL, Gravel M (2001) Scheduling a single machine with sequence dependent setup time using Ant Colony Optimization. Technical report 2001-003. Faculté des Sciences de L’Administration, Université Laval

    Google Scholar 

  60. McMullen PR (2001) An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives. Artif Intell Eng 15:309–317

    Article  Google Scholar 

  61. T’kindt V, Monmarché N, Tercinet F, Laügt D (2002) An ant colony optimization algorithm to solve a 2-machine bi-criteria flowshop scheduling problem. Eur J Oper Res 142(2):250–257

    Article  Google Scholar 

  62. Storn R, Price K (1995) Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012. International Computer Science Institute

    Google Scholar 

  63. Storn R, Price K (1997) Differential evolution—a fast and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Article  Google Scholar 

  64. Price KV, Storn MR, Lampinen JA (2005) Differential evolution. A practical approach to global optimization. Springer, Heidelberg

    Google Scholar 

  65. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston

    Google Scholar 

  66. Schwefel HP (1995) Evolution and optimum seeking. Wiley, New York

    Google Scholar 

  67. Mezura-Montes E, Velázquez-Reyes J, Coello Coello CA (2006) Comparing differential evolution models for global optimization. In: Cattolico M et al. (ed) 2006 genetic and evolutionary computation conference, vol 1. ACM Press, Seattle, pp 485–492

    Google Scholar 

  68. Chang C, Xu D, Quek H (1999) Pareto-optimal set based multiobjective tuning of fuzzy automatic train operation for mass transit system. IEEE Proc Electr Power Appl 146(5):577–583

    Article  Google Scholar 

  69. Bergey P (1999) An agent enhanced intelligent spreadsheet solver for multi-criteria decision making. In: Proceedings of the fifth Americas conference on information systems, Milwaukee, pp 966–968

    Google Scholar 

  70. Abbass HA, Sarker R, Newton C (2001) PDE: a pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the congress on evolutionary computation 2001, vol 2, pp 971–978

    Google Scholar 

  71. Abbass HA, Sarker R (2002) The Pareto differential evolution algorithm. Int J Artif Intell Tools 11(4):531–552

    Article  Google Scholar 

  72. Sarker R, Abbass HA, Newton CS (2003) Solving two multi-objective optimization problems using evolutionary algorithm. In: Mohammadian M, Sarker RA, Yao X (eds) Computational intelligence in control. Idea Group Publishing, Hershey, pp 218–232

    Chapter  Google Scholar 

  73. Madavan NK (2002) Multiobjective optimization using a Pareto differential evolution approach. In: Congress on evolutionary computation, vol 2, pp 1145–1150

    Google Scholar 

  74. Xue F, Sanderson AC, Graves RJ (2003) Pareto-based multiobjective differential evolution. In: Proceedings of 2003 congress on evolutionary computation, vol 2. IEEE Press, Canberra, pp 862–869

    Google Scholar 

  75. Xue F (2004) Multi-objective differential evolution: theory and applications. PhD thesis, Rensselaer Polytechnic Institute

    Google Scholar 

  76. Babu B, Jehan MML (2003) Differential evolution for multi-objective optimization. In: Proceedings of 2003 congress on evolutionary computation, vol 4. IEEE Press, pp 2696–2703

    Google Scholar 

  77. Parsopoulos K, Taoulis D, Pavlidis N, Plagianakos V, Vrahatis M (2004) Vector evaluated differential evolution for multiobjective optimization. In: Proceedings of 2004 congress on evolutionary computation, vol 1. IEEE Press, pp 204–211

    Google Scholar 

  78. Iorio AW, Li X (2004) Solving rotated multiobjective optimization problems using differential evolution. In: AI 2004: advances in artificial intelligence proceedings (Lecture notes in artificial intelligence), vol 3339. Springer, New York, pp 861–872

    Google Scholar 

  79. Sharma S, Rangaiah GP (2013) Multi-objective optimization of a bio-diesel production process. Fuel 103:269–277

    Article  CAS  Google Scholar 

  80. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the 1995 I.E. international conference on neural networks, 1942-1948

    Google Scholar 

  81. Moore J, Chapman R (1999) Application of particle swarm to multiple objective optimization. Department of Computer Science and Software Engineering, Auburn University

    Google Scholar 

  82. Ray T, Liew K (2002) A swarm metaphor for multiobjective design optimization. Eng Optim 34(2):141–153

    Article  Google Scholar 

  83. Parsopoulus K, Vrahatis M (2002) Particle swarm optimization method in multiobjective problems. In: Proceedings of the 2002 ACM symposium on applied computing. ACM Press, pp 603–607

    Google Scholar 

  84. Hu X, Eberhart R (2002) Multiobjective optimization using dynamic neighborhood particle swarm optimization. In: Congress on evolutionary computation, vol 2, pp 1677–1681

    Google Scholar 

  85. Coello Coello CA, Salazar Lechuga M (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Congress on evolutionary computation, vol 2, pp 1051–1056

    Google Scholar 

  86. Bhaskar V, Gupta SK, Ray AK (2000) Applications of multiobjective optimization in chemical engineering. Rev Chem Eng 16(1):1–54

    Article  CAS  Google Scholar 

  87. Reay D, Ramshaw C, Harvey A (2008) Process intensification. Engineering for efficiency, sustainability and flexibility. Elsevier, Amsterdam

    Google Scholar 

  88. Cheng S-H, Chen H-J, Chang H, Chang C-K, Chen Y-M (2008) Multi-objective optimization for two catalytic membrane reactors—methanol synthesis and hydrogen production. Chem Eng Sci 63(6):1428–1437

    Article  CAS  Google Scholar 

  89. Gómez-Castro FI, Rodríguez-Ángeles MA, Segovia-Hernández JG, Gutiérrez-Antonio C, Briones-Ramírez A (2008) Optimal designs of multiple dividing wall columns. Chem Eng Technol 34(12):2051–2058

    Article  Google Scholar 

  90. Gutiérrez-Antonio C, Briones-Ramírez A (2009) Pareto front of ideal petlyuk sequences using a multiobjective genetic algorithm with constraints. Comput Chem Eng 33(2):454–464

    Article  Google Scholar 

  91. Vázquez-Castillo JA, Venegas-Sánchez JA, Segovia-Hernández JG, Hernández-Escoto H, Hernández S, Gutiérrez-Antonio C, Briones-Ramírez A (2009) Design and optimization, using genetic algorithms, of intensified distillation systems for a class of quaternary mixtures. Comput Chem Eng 33(11):1841–1850

    Article  Google Scholar 

  92. Miranda-Galindo EY, Segovia-Hernández JG, Hernández S, Gutiérrez-Antonio C, Briones-Ramírez A (2011) Reactive thermally coupled distillation sequences: Pareto front. Ind Eng Chem Res 50(2):926–938

    Article  CAS  Google Scholar 

  93. Behroozsarand A, Shafiei S (2011) Multiobjective optimization of reactive distillation with thermal coupling using non-dominated sorting genetic algorithm-II. J Nat Gas Sci Eng 3(2):365–374

    Article  CAS  Google Scholar 

  94. Miranda-Galindo EY, Segovia-Hernández JG, Hernández S, Bonilla-Petriciolet A, Rangaiah GP (2012) Multiobjective optimization in distillation with reactor-side for hydrodesulfurization process of diesel. Comput Aided Chem Eng 30:682–686

    Article  CAS  Google Scholar 

  95. Torres-Ortega CE, Segovia-Hernández JG, Gómez-castro FI, Hernández S, Bonilla-Petriciolet A, Rong BG, Errico M (2013) Design, optimization and controllability of an alternative process based on extractive distillation for an ethane–carbon dioxide mixture. Chem Eng Process Process Intensif 74:55–68

    Article  CAS  Google Scholar 

  96. Bravo-Bravo C, Segovia-Hernández JG, Hernández S, Gómez-castro FI, Gutiérrez-Antonio C, Briones-Ramírez A (2013) Hybrid distillation/melt crystallization process using thermally coupled arrangements: optimization with evaluative algorithms. Chem Eng Process Process Intensif 67:25–38

    Article  CAS  Google Scholar 

  97. Cadavid JG, Godoy-Silva RD, Narvaez PC, Camargo M, Fonteix C (2013) Biodiesel production in a counter-current reactive extraction column: modelling, parametric identification and optimisation. Chem Eng J 228:717–723

    Article  CAS  Google Scholar 

  98. Micovic J, Beierling T, Lutze P, Sadowski G, Górak A (2013) Design of hybrid distillation/melt crystallisation processes for separation of close boiling mixtures. Chem Eng Process Process Intensif 67:16–24

    Article  CAS  Google Scholar 

  99. Beierling T, Micovic J, Lutze P, Sadowski G (2014) Using complex layer melt crystallization models for the optimization of hybrid distillation/melt crystallization processes. Chem Eng Process Process Intensif 85:10–23

    Article  CAS  Google Scholar 

  100. Torres-Ortega CE, Segovia-Hernández JG, Gómez-Castro FI, Hernández S, Bonilla-Petriciolet A, Rong BG, Errico M (2014) Optimization of alternative distillation sequences for natural gas sweetening. Comput Aided Chem Eng 33:1201–1206

    Article  Google Scholar 

  101. Micovic J, Werth K, Lutze P (2014) Hybrid separations combining distillation and organic solvent nanofiltration for separation of wide boiling mixtures. Chem Eng Res Des 92(11):2131–2147

    Article  CAS  Google Scholar 

  102. Errico M, Pirellas P, Torres-Ortega CE, Rong BG, Segovia-Hernández JG (2014) A combined method for the design and optimization of intensified distillation systems. Chem Eng Process Process Intensif 85:69–76

    Article  CAS  Google Scholar 

  103. Domingues L, Pinheiro CIC, Oliveira NMC (2014) Optimal design of reactive distillation systems: application to the production of ethyl tert-butyl ether (ETBE). Comput Chem Eng 64:81–94

    Article  CAS  Google Scholar 

  104. Woinaroschy A (2014) Multiobjective optimal design for biodiesel sustainable production. Fuel 135:393–405

    Article  CAS  Google Scholar 

  105. Gutiérrez-Antonio C, Gómez-Castro FI, Hernández S, Briones-Ramírez A (2015) Intensification of a hydrotreating process to produce biojet fuel using thermally coupled distillation. Chem Eng Process Process Intensif 88:29–36

    Article  Google Scholar 

  106. Gómez-Castro FI, Segovia-Hernández JG, Hernández S, Gutiérrez-Antonio C, Briones-Ramírez A, Gamiño-Arroyo Z (2015) Design of non-equilibrium stage separation systems by a stochastic optimization approach for a class of mixtures. Chem Eng Process Process Intensif 88:58–69

    Article  Google Scholar 

  107. Sushil K, Datta D, Babu BV (2011) Estimation of equilibrium parameters using differential evolution in reactive extraction of propionic acid by tri-n-butyl phosphate. Chem Eng Process Process Intensif 50(7):614–622

    Article  Google Scholar 

  108. Jaime-Leal JE, Bonilla-Petriciolet A, Bhargava V, Fateen SEK (2015) Nonlinear parameter estimation of e-NRTL model for quaternary ammonium ionic liquids using Cuckoo search. Chem Eng Res Des 93:464–472

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Gutiérrez-Antonio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gutiérrez-Antonio, C., Bonilla-Petriciolet, A. (2016). Stochastic Optimization for Process Intensification. In: Segovia-Hernández, J., Bonilla-Petriciolet, A. (eds) Process Intensification in Chemical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-28392-0_9

Download citation

Publish with us

Policies and ethics