Skip to main content

Process Intensification in Heat and Mass Exchanger Networks

  • Chapter
  • First Online:
Process Intensification in Chemical Engineering
  • 2468 Accesses

Abstract

This chapter presents the use of process integration as a useful tool for intensifying processes. Particularly, mass and heat integration through the synthesis of mass and heat exchanger networks represent powerful tools that can be used for reducing the need of external agents such as fresh water and hot and cold utilities. Two optimization formulations are presented for mass and heat integration and the application to two case studies shows significant savings of external utilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stankiewicz A, Moulijn J (eds) (2004) Process intensification: history, philosophy, principles. Marcel Dekker, New York

    Google Scholar 

  2. Ponce-Ortega JM, Al-Thubaiti MM, El-Halwagi MM (2012) Process intensification: new understanding and systematic approach. Chem Eng ProcessProcess Intensif 53(3):63–75

    Article  CAS  Google Scholar 

  3. Lutze P, Gani R, Woodley JM (2010) Process intensification: a perspective on process synthesis. Chem Eng ProcessProcess Intensif 49(6):57–558

    Google Scholar 

  4. El-Halwagi MM (2012) Sustainable design through process integration: fundamentals and applications to industrial pollution prevention, resource conservation and profitability enhancement. Butterworth Heinemann, Oxford

    Google Scholar 

  5. Gopalakrishnan M, Ponce-Ortega JM, El-Halwagi MM (2012) A systems approach for process simplification through process integration. Chem Eng Technol 35(7):1262–1272

    Article  CAS  Google Scholar 

  6. Serna-González M, Jiménez-Gutiérrez A, Ponce-Ortega JM (2007) Targets for heat exchanger networks synthesis with different heat transfer coefficients and non-uniform exchanger specifications. Chem Eng Res Des 85(A10):1447–1457

    Article  Google Scholar 

  7. Serna-González M, Ponce-Ortega JM (2011) Total cost target for heat exchanger networks considering simultaneously pumping and area effects. Appl Therm Eng 31(11–12):1964–1975

    Article  Google Scholar 

  8. Ponce-Ortega JM, Serna-González M, Jiménez-Gutiérrez A (2008) Synthesis of multipass heat exchanger networks using genetic algorithms. Comput Chem Eng 32(10):2320–2332

    Article  CAS  Google Scholar 

  9. Ponce-Ortega JM, Jiménez-Gutiérrez A, Grossmann IE (2008) Optimal synthesis of heat exchanger networks involving isothermal streams. Comput Chem Eng 32(8):1918–1942

    Article  CAS  Google Scholar 

  10. Ponce-Ortega JM, Serna-González M, Jiménez-Gutiérrez A (2010) Synthesis of heat exchanger networks with optimal placement of multiple utilities. Ind Eng Chem Res 49(6):2849–2856

    Article  CAS  Google Scholar 

  11. López-Maldonado LA, Ponce-Ortega JM, Segovia-Hernández JG (2011) Mutiobjective synthesis of heat exchanger networks minimizing the total annual cost and the environmental impact. Appl Therm Eng 31(6–7):1099–1113

    Article  Google Scholar 

  12. Lira-Barragán LF, Ponce-Ortega JM, Serna-González M, El-Halwagi MM (2014) Optimal design of process energy systems integrating sustainable considerations. Energy 76:139–160

    Article  Google Scholar 

  13. Lira-Barragán LF, Ponce-Ortega JM, Serna-González M, El-Halwagi MM (2014) Sustainable integration of trigeneration systems with heat exchanger networks. Ind Eng Chem Res 53(7):2732–2750

    Article  Google Scholar 

  14. Ponce-Ortega JM, Hortua AC, El-Halwagi MM, Jiménez-Gutiérrez A (2009) A property-based optimization of direct recycle networks and wastewater treatment processes. AIChE J 55(9):2329–2344

    Article  CAS  Google Scholar 

  15. Nápoles-Rivera F, Ponce-Ortega JM, El-Halwagi MM, Jiménez-Gutiérrez A (2010) Global optimization of mass and property integration networks with in-plant property interceptors. Chem Eng Sci 65(15):4363–4377

    Article  Google Scholar 

  16. Rojas-Torres MG, Ponce-Ortega JM, Serna-González M, Nápoles-Rivera F, El-Halwagi MM (2013) Synthesis of water networks involving temperature-based property operators and thermal integration. Ind Eng Chem Res 52(1):442–461

    Article  CAS  Google Scholar 

  17. Rubio-Castro E, Ponce-Ortega JM, Serna-González M, El-Halwagi MM, Pham V (2013) Global optimization in property-based inter-plant water integration. AIChE J 59(3):813–833

    Article  CAS  Google Scholar 

  18. Sotelo-Pichardo C, Ponce-Ortega JM, Nápoles-Rivera F, Serna-González M, El-Halwagi MM, Frausto-Hernández S (2014) Optimal reconfiguration of water networks base on properties. Clean Technol Environ Policy 16(2):303–328

    Article  Google Scholar 

  19. Sotelo-Pichardo C, Bamufleh H, Ponce-Ortega JM, El-Halwagi MM (2014) Optimal synthesis of property-based water networks considering growing demand projections. Ind Eng Chem Res 53(47):18260–18272

    Article  CAS  Google Scholar 

  20. Jimenez-Gutierrez A, Lona-Ramírez J, Ponce-Ortega JM, El-Halwagi MM (2014) An MINLP model for the simultaneous integration of energy, mass and properties in water networks. Comput Chem Eng 71:52–66

    Article  CAS  Google Scholar 

  21. Ponce-Ortega JM, El-Halwagi MM, Jiménez-Gutiérrez A (2010) Global optimization of property-based recycle and reuse networks including environmental constraints. Comput Chem Eng 34(3):318–330

    Article  CAS  Google Scholar 

  22. Ponce-Ortega JM, Mosqueda-Jiménez FW, Serna-González M, Jiménez-Gutiérrez A, El-Halwagi MM (2011) A property-based approach to the synthesis of material conservation networks with economic an environmental objectives. AIChE J 57(9):2369–2387

    Article  CAS  Google Scholar 

  23. López-Villareal F, Lira-Barragán LF, Rico-Ramírez V, Ponce-Ortega JM, El-Halwagi MM (2014) An MFA optimization approach for pollution treading considering the sustainability of the surrounding watershed. Comput Chem Eng 63:140–151

    Article  Google Scholar 

  24. El-Halwagi A, Rosas C, Ponce-Ortega JM, Jiménez-Gutiérrez A, Mannan MS, El-Halwagi MM (2013) Multi-objective optimization of biorefineries with economic and safety objectives. AIChE J 59(7):2427–2434

    Article  CAS  Google Scholar 

  25. Yee TF, Grossmann IE (1990) Simultaneous optimization models for heat integration-II. Heat exchanger network synthesis. Comput Chem Eng 14(10):1165–1184

    Article  CAS  Google Scholar 

  26. Shenoy UV, Sinha A, Bondyopadhyay S (1998) Multiple utilities targeting for heat exchanger networks. Chem Eng Res Des 76(Part A):259–272

    Article  CAS  Google Scholar 

  27. Isafiade AJ, Fraser DM (2008) Interval-based MINLP superstructure synthesis of heat exchange networks. Chem Eng Res Des 86(A3):245–257

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Ponce-Ortega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ponce-Ortega, J.M. (2016). Process Intensification in Heat and Mass Exchanger Networks. In: Segovia-Hernández, J., Bonilla-Petriciolet, A. (eds) Process Intensification in Chemical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-28392-0_4

Download citation

Publish with us

Policies and ethics