Skip to main content

Coronary CT Angiography After Revascularization

  • Chapter
  • First Online:
Cardiac CT Imaging

Abstract

Because of the high number of coronary revascularizations clinicians frequently have to assess bypass or stent function in patients presenting with chest pain or other symptoms suggesting dysfunction. Predominantly, invasive coronary angiography is performed for this purpose. In the last decade innovations in CT scanners, protocols and reconstructions have led to a remarkable increase in diagnostic accuracy of coronary CT angiography for the assessment of coronary bypass grafts and stents whereas radiation exposure has significantly decreased. Occlusions of bypass grafts and occlusive in-stent stenoses can be ruled out with a high negative predictive value approaching 100 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riley RF, Don CW, Powell W, Maynard C, Dean LS. Trends in coronary revascularization in the United States from 2001 to 2009. Circ Cardiovasc Qual Outcomes. 2011;4:193–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goldman S, Zadina K, Moritz T, VA Cooperative Study Group #207/297/364, et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol. 2004;44:2149–56.

    Article  PubMed  Google Scholar 

  3. Schwartz L, Kip KE, Frye RL, Alderman EL, Schaff HV, Detre KM, Bypass Angioplasty Revascularization Investigation. Coronary bypass graft patency in patients with diabetes in the Bypass Angioplasty Revascularization Investigation (BARI). Circulation. 2002;106:2652–8.

    Article  PubMed  Google Scholar 

  4. Lytle BW, Loop FD, Cosgrove DM, Ratliff NB, Easley K, Taylor PC. Long-term (5 to 12 years) serial studies of internal mammary artery and saphenous vein coronary bypass grafts. J Thorac Cardiovasc Surg. 1985;89:248–58.

    CAS  PubMed  Google Scholar 

  5. Shi Y, O’Brien Jr JE, Mannion JD, Morrison RC, Chung W, Fard A, Zalewski A. Remodeling of autologous saphenous vein grafts. The role of perivascular myofibroblasts. Circulation. 1997;95:2684–93.

    Article  CAS  PubMed  Google Scholar 

  6. Fitzgibbon GM, Kafka HP, Leach AJ, Keon WJ, Hooper GD, Burton JR. Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol. 1996;28:616–26.

    Article  CAS  PubMed  Google Scholar 

  7. Berger A, MacCarthy PA, Siebert U, Carlier S, Wijns W, Heyndrickx G, Bartunek J, Vanermen H, De Bruyne B. Long-term patency of internal mammary artery bypass grafts. Relationship with preoperative severity of the native coronary artery stenosis. Circulation. 2004;110(suppl II):II-36–40.

    Google Scholar 

  8. Brundage BH, Lipton MJ, Herfkens RJ, Berninger WH, Redington RW, Chatterjee K, Carlsson E. Detection of patent coronary bypass grafts by computed tomography. A preliminary report. Circulation. 1980;61:826–31.

    Article  CAS  PubMed  Google Scholar 

  9. Daniel WG, Dohring W, Stender HS, Lichtlen PR. Value and limitations of computed tomography in assessing aortocoronary bypass graft patency. Circulation. 1983;67:983–7.

    Article  CAS  PubMed  Google Scholar 

  10. Achenbach S, Moshage W, Ropers D, Nossen J, Bachmann K. Noninvasive, three-dimensional visualization of coronary artery bypass grafts by electron beam tomography. Am J Cardiol. 1997;79:856–61.

    Article  CAS  PubMed  Google Scholar 

  11. Hamon M, Lepage O, Malagutti P, et al. Diagnostic performance of 16- and 64-section spiral CT for coronary artery bypass graft assessment: meta-analysis. Radiology. 2008;247:679–86.

    Article  PubMed  Google Scholar 

  12. Malagutti P, Nieman K, Meijboom WB, et al. Use of 64-slice CT in symptomatic patients after coronary bypass surgery: evaluation of grafts and coronary arteries. Eur Heart J. 2007;28:1879–85.

    Article  PubMed  Google Scholar 

  13. Pache G, Saueressig U, Frydrychowicz A, et al. Initial experience with 64-slice cardiac CT: non-invasive visualization of coronary artery bypass grafts. Eur Heart J. 2006;27:976–80.

    Article  PubMed  Google Scholar 

  14. Dikkers R, Willems TP, Tio RA, Anthonio RL, Zijlstra F, Oudkerk M. The benefit of 64-MDCT prior to invasive coronary angiography in symptomatic post-CABG patients. Int J Cardiovasc Imaging. 2006;23:369–77.

    Article  PubMed  Google Scholar 

  15. Ropers D, Pohle FK, Kuettner A, et al. Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation. 2006;114:2334–41.

    Article  PubMed  Google Scholar 

  16. Meyer TS, Martinoff S, Hadamitzky M, et al. Improved non-invasive assessment of coronary artery bypass grafts with 64-slice computed tomographic angiography in an unselected patient population. J Am Coll Cardiol. 2007;49:946–50.

    Article  PubMed  Google Scholar 

  17. Jabara R, Chronos N, Klein L, et al. Comparison of multidetector 64-slice computed tomographic angiography to coronary angiography to assess the patency of coronary artery bypass grafts. Am J Cardiol. 2007;99:1529–34.

    Article  PubMed  Google Scholar 

  18. Feuchtner GM, Schachner T, Bonatti J, et al. Diagnostic performance of 64-slice computed tomography in evaluation of coronary artery bypass grafts. AJR Am J Roentgenol. 2007;189:574–80.

    Article  PubMed  Google Scholar 

  19. Nazeri I, Shahabi P, Tehrai M, Sharif-Kashani B, Nazeri A. Assessment of patients after coronary artery bypass grafting using 64-slice computed tomography. Am J Cardiol. 2009;103:667–73.

    Article  PubMed  Google Scholar 

  20. de Graaf FR, van Velzen JE, Witkowska AJ, et al. Diagnostic performance of 320-slice multidetector computed tomography coronary angiography in patients after coronary artery bypass grafting. Eur Radiol. 2011;21:2285–96.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Weustink AC, Nieman K, Pugliese F, et al. Diagnostic accuracy of computed tomography angiography in patients after bypass grafting: comparison with invasive coronary angiography. JACC Cardiovasc Imaging. 2009;2:816–24.

    Article  PubMed  Google Scholar 

  22. Mushtaq S, Andreini D, Pontone G, et al. Prognostic value of coronary CTA in coronary bypass patients: a long-term follow-up study. JACC Cardiovasc Imaging. 2014;7:580–9.

    Article  PubMed  Google Scholar 

  23. Desbiolles L, Leschka S, Plass A, et al. Evaluation of temporal windows for coronary artery bypass graft imaging with 64-slice CT. Eur Radiol. 2007;17:2819–28.

    Article  PubMed  Google Scholar 

  24. Lee SK, Jung JI, Ko JM, Lee HG. Image quality and radiation exposure of coronary CT angiography in patients after coronary artery bypass graft surgery: influence of imaging direction with 64-slice dual-source CT. J Cardiovasc Comput Tomogr. 2014;8:124–30.

    Article  PubMed  Google Scholar 

  25. Trikalinos TA, Alsheikh-Ali AA, Tatsioni A, Nallamothu BK, Kent DM. Percutaneous coronary interventions for non-acute coronary artery disease: a quantitative 20-year synopsis and a network meta-analysis. Lancet. 2009;373:911–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cassese S, Byrne RA, Tada T, et al. Incidence and predictors of restenosis after coronary stenting in 10 004 patients with surveillance angiography. Heart. 2014;100:153–9.

    Article  PubMed  Google Scholar 

  27. Schmermund A, Haude M, Baumgart D, Görge G, Grönemeyer D, Seibel R, Sehnert C, Erbel R. Non-invasive assessment of coronary Palmaz-Schatz stents with contrast enhanced electron beam computed tomography. Eur Heart J. 1996;17:1546–53.

    Article  CAS  PubMed  Google Scholar 

  28. Möhlenkamp S, Pump H, Baumgart D, Haude M, Gronemeyer DH, Seibel RM, Schwartz RS, Erbel R. Minimally invasive evaluation of coronary stents with electron beam computed tomography: In vivo and in vitro experience. Catheter Cardiovasc Interv. 1999;48:39–47.

    Article  PubMed  Google Scholar 

  29. Pump H, Möhlenkamp S, Sehnert CA, Schimpf SS, Schmidt A, Erbel R, Gronemeyer DH, Seibel RM. Coronary arterial stent patency: assessment with electron-beam CT. Radiology. 2000;214:447–52.

    Article  CAS  PubMed  Google Scholar 

  30. Maintz D, Juergens KU, Wichter T, Grude M, Heindel W, Fischbach R. Imaging of coronary artery stents using multislice computed tomography: in vitro evaluation. Eur Radiol. 2003;13:830–5.

    PubMed  Google Scholar 

  31. Mahnken AH, Buecker A, Wildberger JE, Ruebben A, Stanzel S, Vogt F, Günther RW, Blindt R. Coronary artery stents in multislice computed tomography: in vitro artifact evaluation. Invest Radiol. 2004;39:27–33.

    Article  PubMed  Google Scholar 

  32. Schlosser T, Scheuermann T, Ulzheimer S, et al. In-vitro evaluation of coronary stents and 64-detector-row computed tomography using a newly developed model of coronary artery stenosis. Acta Radiol. 2008;49:56–64.

    Article  CAS  PubMed  Google Scholar 

  33. Schlosser T, Scheuermann T, Ulzheimer S, et al. In vitro evaluation of coronary stents and in-stent stenosis using a dynamic cardiac phantom and a 64-detector row CT scanner. Clin Res Cardiol. 2007;96:883–90.

    Article  CAS  PubMed  Google Scholar 

  34. Gassenmaier T, Petri N, Allmendinger T, et al. Next generation coronary CT angiography: in vitro evaluation of 27 coronary stents. Eur Radiol. 2014;24:2953–61.

    Article  PubMed  Google Scholar 

  35. Rixe J, Achenbach S, Ropers D, et al. Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography. Eur Heart J. 2006;27:2567–72.

    Article  PubMed  Google Scholar 

  36. Ehara M, Kawai M, Surmely JF, et al. Diagnostic accuracy of coronary in-stent restenosis using 64-slice computed tomography: comparison with invasive coronary angiography. J Am Coll Cardiol. 2007;49:951–9.

    Article  PubMed  Google Scholar 

  37. Pugliese F, Weustink AC, Van Mieghem C, et al. Dual source coronary computed tomography angiography for detecting in-stent restenosis. Heart. 2008;94(7):848–54.

    Article  CAS  PubMed  Google Scholar 

  38. Andreini D, Pontone G, Bartorelli AL, et al. Comparison of feasibility and diagnostic accuracy of 64-slice multidetector computed tomographic coronary angiography versus invasive coronary angiography versus intravascular ultrasound for evaluation of in-stent restenosis. Am J Cardiol. 2009;103:1349–58.

    Article  PubMed  Google Scholar 

  39. Kubo T, Matsuo Y, Ino Y, et al. Diagnostic accuracy of CT angiography to assess coronary stent thrombosis as determined by intravascular OCT. JACC Cardiovasc Imaging. 2011;4:1040–3.

    Article  PubMed  Google Scholar 

  40. Zhang J, Li M, Lu Z, Hang J, Pan J, Sun L. In vivo evaluation of stent patency by 64-slice multidetector CT coronary angiography: shall we do it or not? Int J Cardiovasc Imaging. 2012;28:651–8.

    Article  PubMed  Google Scholar 

  41. Roura G, Gomez-Lara J, Ferreiro JL, et al. Multislice CT for assessing in-stent dimensions after left main coronary artery stenting: a comparison with three dimensional intravascular ultrasound. Heart. 2013;99:1106–12.

    Article  PubMed  Google Scholar 

  42. Sun Z, Almutairi AM. Diagnostic accuracy of 64 multislice CT angiography in the assessment of coronary in-stent restenosis: a meta-analysis. Eur J Radiol. 2010;73:266–73.

    Article  PubMed  Google Scholar 

  43. Rief M, Zimmermann E, Stenzel F, et al. Computed tomography angiography and myocardial computed tomography perfusion in patients with coronary stents: prospective intraindividual comparison with conventional coronary angiography. J Am Coll Cardiol. 2013;62:1476–85.

    Article  PubMed  Google Scholar 

  44. Onuma Y, Dudek D, Thuesen L, et al. Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB cohort A trial. JACC Cardiovasc Interv. 2013;6:999–1009.

    Article  PubMed  Google Scholar 

  45. Ebersberger U, Tricarico F, Schoepf UJ, et al. CT evaluation of coronary artery stents with iterative image reconstruction: improvements in image quality and potential for radiation dose reduction. Eur Radiol. 2013;23:125–32.

    Article  PubMed  Google Scholar 

  46. Eisentopf J, Achenbach S, Ulzheimer S, Layritz C, Wuest W, May M, Lell M, Ropers D, Klinghammer L, Daniel WG, Pflederer T. Low-dose dual-source CT angiography with iterative reconstruction for coronary artery stent evaluation. JACC Cardiovasc Imaging. 2013;6:458–65.

    Article  PubMed  Google Scholar 

  47. Oda S, Utsunomiya D, Funama Y, et al. Improved coronary in-stent visualization using a combined high-resolution kernel and a hybrid iterative reconstruction technique at 256-slice cardiac CT-Pilot study. Eur J Radiol. 2013;82:288–95.

    Article  PubMed  Google Scholar 

  48. Zhou Q, Jiang B, Dong F, et al. Computed tomography coronary stent imaging with iterative reconstruction: a trade-off study between medium kernel and sharp kernel. J Comput Assist Tomogr. 2014;38:604–12.

    Article  PubMed  Google Scholar 

  49. Xia Y, Junjie Y, Ying Z, et al. Accuracy of 128-slice dual-source CT using high-pitch spiral mode for the assessment of coronary stents: first in vivo experience. Eur J Radiol. 2013;82:617–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Eckert MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Eckert, J., Schmidt, M., Voigtländer, T., Schmermund, A. (2016). Coronary CT Angiography After Revascularization. In: Budoff, M., Shinbane, J. (eds) Cardiac CT Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-28219-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28219-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28217-6

  • Online ISBN: 978-3-319-28219-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics