Skip to main content

Guided by Schwarz’ Functions: A Walk Through the Garden of Mahler’s Transcendence Method

  • Chapter
  • First Online:
From Arithmetic to Zeta-Functions

Abstract

In this paper, transcendence results and, more generally, results on the algebraic independence of functions and their values are proved via Mahler’s analytic method. Here the key point is that the functions involved satisfy certain types of functional equations as G d (z d) = G d (z) − z∕(1 − z) in the case of \(G_{d}(z):=\sum _{h\geq 0}z^{d^{h} }/(1 - z^{d^{h} })\) for d ∈ { 2, 3, 4, }. In 1967, these particular functions G d (z) were arithmetically studied by W. Schwarz using Thue–Siegel–Roth’s approximation method.

Dedicated to the Memory of Professor Wolfgang Schwarz

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here and in the sequel, \(\overline{\mathbb{Q}}\) denotes the field of all complex algebraic numbers.

References

  1. P. Bundschuh, K. Väänänen, Algebraic independence of certain Mahler functions and of their values. J. Aust. Math. Soc. 98, 289–310 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Coons, Extension of some theorems of W. Schwarz. Can. Math. Bull. 55, 60–66 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Duverney, Ku. Nishioka, An inductive method for proving transcendence of certain series. Acta Arith. 110, 305–330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. J.H. Loxton, A.J. van der Poorten, A class of hypertranscendental functions. Aequationes Math. 16, 93–106 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. J.H. Loxton, A.J. van der Poorten, Algebraic independence properties of the Fredholm series. J. Aust. Math. Soc. Ser. A 26, 31–45 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen. Math. Ann. 101, 342–366 (1929); Berichtigung, ibid. 103, 532 (1930)

    Google Scholar 

  7. K. Mahler, Über das Verschwinden von Potenzreihen mehrerer Veränderlicher in speziellen Punktfolgen. Math. Ann. 103, 573–587 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Mahler, Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen. Math. Z. 32, 545–585 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Mahler, Remarks on a paper by W. Schwarz. J. Number Theory 1, 512–521 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ke. Nishioka, A note on differentially algebraic solutions of first order linear difference equations. Aequationes Math. 27, 32–48 (1984)

    Google Scholar 

  11. Ke. Nishioka, Algebraic function solutions of a certain class of functional equations. Arch. Math. 44, 330–335 (1985)

    Google Scholar 

  12. Ku. Nishioka, Mahler Functions and Transcendence. Lecture Notes in Mathematics, vol. 1631 (Springer, Berlin, 1996)

    Google Scholar 

  13. Ku. Nishioka, Algebraic independence of reciprocal sums of binary recurrences. Monatsh. Math. 123, 135–148 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Schwarz, Remarks on the irrationality and transcendence of certain series. Math. Scand. 20, 269–274 (1967)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bundschuh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bundschuh, P., Väänänen, K. (2016). Guided by Schwarz’ Functions: A Walk Through the Garden of Mahler’s Transcendence Method. In: Sander, J., Steuding, J., Steuding, R. (eds) From Arithmetic to Zeta-Functions. Springer, Cham. https://doi.org/10.1007/978-3-319-28203-9_6

Download citation

Publish with us

Policies and ethics