Skip to main content

A Turán-Kubilius Inequality on Mappings of a Finite Set

  • Chapter
  • First Online:
From Arithmetic to Zeta-Functions

Abstract

Similarly as in number theory one may define the notion of an additive function in the set of all mappings of a finite set into itself. If a mapping is sampled uniformly at random, the function becomes a sum of dependent random variables. Estimation of its variance via the sum of variances of the summands is a non-trivial problem. We give an answer analogously to the Turán-Kubilius inequality, well known in probabilistic number theory.

Zur Erinnerung an Professor Wolfgang Schwarz

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Arratia, A.D. Barbour, S. Tavaré, Logarithmic Combinatorial Structures: A Probabilistic Approach. EMS Monographs in Mathematics (EMS Publishing House, Zürich, 2003)

    Google Scholar 

  2. A. Biró, T. Szamuely, A Turán-Kubilius inequality with multiplicative weights. Acta Math. Hung. 70 (1–2), 39–56 (1996)

    Article  MATH  Google Scholar 

  3. P.D.T.A. Elliott, Duality in Analytic Number Theory (Cambridge University Press, Cambridge, 1997)

    Book  MATH  Google Scholar 

  4. P. Flajolet, R. Sedgewick, Analytic Combinatorics (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  5. J.C. Hansen, A functional central limit theorem for random mappings. Ann. Probab. 17 (1), 317–332 (1989); Correction. Ann. Probab. 19 (3), 1393–1396 (1991)

    Google Scholar 

  6. J.C. Hansen, J. Jaworski, A random mapping with preferential attachment. Random Struct. Algorithms 34 (1), 87–111 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Kubilius, Probabilistic Methods in the Theory of Numbers. Translations of Mathematical Monographs, vol. 11 (American Mathematical Society, Providence, 1964)

    Google Scholar 

  8. E. Manstavičius, Stochastic processes with independent increments for random mappings. Lith. Math. J. 39 (4), 393–407 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Manstavičius, On the random mapping statistics, in Elementare und Analytische Zahlentheorie (Tagungsband) Proceedings ELAZ-Conference, May 24–28, 2004, ed. by W. Schwarz, J. Steuding (Hg.) (Franz Steiner Verlag, Stuttgart, 2006), pp. 180–191

    Google Scholar 

  10. E. Manstavičius, Moments of additive functions on random permutations. Acta Appl. Math. 97, 119–127 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Manstavičius, On total variation approximations for random assemblies, in 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA’12), ed. by N. Broutin, L. Devroye (Association of Discrete Mathematics & Theoretical Computer Science, Nancy, 2012), pp. 97–108

    Google Scholar 

  12. E. Manstavičius, V. Stepanauskas, On variance of an additive function with respect to a generalized Ewens probability, in Proceeding of 25th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA’14), ed. by M. Bousquet-Mélou, M. Soria. DMTCS-HAL Proceedings Series (2014), pp. 301–312

    Google Scholar 

  13. S. Wehmeier, Die Turán-Kubilius Ungleichung für additive arithmetische Halbgruppen. Liet. Matematikos Rinkinys 46 (3), 457–471 (2006); Translation in: Lith. Math. J. 46 (3), 371–383 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenijus Manstavičius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manstavičius, E. (2016). A Turán-Kubilius Inequality on Mappings of a Finite Set. In: Sander, J., Steuding, J., Steuding, R. (eds) From Arithmetic to Zeta-Functions. Springer, Cham. https://doi.org/10.1007/978-3-319-28203-9_19

Download citation

Publish with us

Policies and ethics