Skip to main content

Forbidden Integer Ratios of Consecutive Power Sums

  • Chapter
  • First Online:
From Arithmetic to Zeta-Functions

Abstract

Let S k (m): = 1k + 2k + ⋯ + (m − 1)k denote a power sum. In 2011 Bernd Kellner formulated the conjecture that for m ≥ 4 the ratio S k (m + 1)∕S k (m) of two consecutive power sums is never an integer. We will develop some techniques that allow one to exclude many integers ρ as a ratio and combine them to exclude the integers 3 ≤ ρ ≤ 1501 and, assuming a conjecture on irregular primes to be true, a set of density 1 of ratios ρ. To exclude a ratio ρ one has to show that the Erdős–Moser type equation (ρ − 1)S k (m) = m k has no non-trivial solutions.

To the memory of Prof. Wolfgang Schwarz

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Arakawa, T. Ibukiyama, M. Kaneko, Bernoulli Numbers and Zeta Functions. Springer Monographs in Mathematics (Springer, Tokyo, 2014)

    Google Scholar 

  2. E. Bach, D. Klyve, J. Sorenson, Computing prime harmonic sums. Math. Comput. 78, 2283–2305 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. J.M. Borwein, A. van der Poorten, J. Shallit, W. Zudilin, Neverending Fractions: An Introduction to Continued Fractions. Australian Mathematical Society Lecture Series, vol. 23 (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  4. W. Butske, L.M. Jaje, D.R. Mayernik, On the equation p | N (1∕p) + (1∕N) = 1, pseudoperfect numbers, and perfectly weighted graphs. Math. Comput. 69, 407–420 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Carlitz, Note on irregular primes. Proc. Am. Math. Soc. 5, 329–331 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Gallot, P. Moree, W. Zudilin, The Erdős-Moser equation 1k + 2k + ⋯ + (m − 1)k = m k revisited using continued fractions. Math. Comput. 80, 1221–1237 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory (Springer, New York, 1990)

    Book  MATH  Google Scholar 

  8. B.C. Kellner, Über irreguläre Paare höherer Ordnungen, Diplomarbeit, Mathematisches Institut der Georg–August–Universität zu Göttingen, Germany (2002). Also available at http://www.bernoulli.org/~{}bk/irrpairord.pdf

  9. B.C. Kellner, On irregular prime power divisors of the Bernoulli numbers. Math. Comput. 76, 405–441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. B.C. Kellner, On stronger conjectures that imply the Erdős-Moser conjecture. J. Number Theory 131, 1054–1061 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. E.E. Kummer, Allgemeiner Beweis des Fermatschen Satzes, dass die Gleichung x λ + y λ = z λ durch ganze Zahlen unlösbar ist, für alle diejenigen Potenz-Exponenten λ, welche ungerade Primzahlen sind und in den Zählern der ersten (λ − 3)∕2 Bernoullischen Zahlen als Factoren nicht vorkommen. J. Reine Angew. Math. 40, 131–138 (1850)

    Google Scholar 

  12. F. Luca, A. Pizarro-Madariaga, C. Pomerance, On the counting function of irregular primes. Indag. Math. 26, 147–161 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Metsänkylä, Distribution of irregular prime numbers. J. Reine Angew. Math. 282, 126–130 (1976)

    MathSciNet  MATH  Google Scholar 

  14. P. Moree, On a theorem of Carlitz-von Staudt. C. R. Math. Rep. Acad. Sci. Canada 16, 166–170 (1994)

    MathSciNet  MATH  Google Scholar 

  15. P. Moree, Diophantine equations of Erdős-Moser type. Bull. Aust. Math. Soc. 53, 281–292 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Moree, A top hat for Moser’s four mathemagical rabbits. Am. Math. Mon. 118, 364–370 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Moree, Moser’s mathemagical work on the equation 1k + 2k + ⋯ + (m − 1)k = m k. Rocky Mt. J. Math. 43, 1707–1737 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Moree, Counting numbers in multiplicative sets: Landau versus Ramanujan. Šiauliai Math. Semin. 8 (16), 161–179 (2013)

    MathSciNet  MATH  Google Scholar 

  19. P. Moree, H. te Riele, J. Urbanowicz, Divisibility properties of integers x, k satisfying 1k + ⋯ + (x − 1)k = x k. Math. Comput. 63, 799–815 (1994)

    MathSciNet  MATH  Google Scholar 

  20. L. Moser, On the diophantine equation 1n + 2n + 3n + ⋯ + (m − 1)n = m n. Scr. Math. 19, 84–88 (1953)

    MATH  Google Scholar 

  21. P. Ribenboim, Catalan’s Conjecture. Are 8 and 9 the only Consecutive Powers? (Academic, Boston, 1994)

    Google Scholar 

  22. W. Schwarz, J. Spilker, Arithmetical Functions. London Mathematical Society Lecture Note Series, vol. 184 (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  23. C.L. Siegel, Zu zwei Bemerkungen Kummers. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 6, 51–57 (1964)

    MathSciNet  MATH  Google Scholar 

  24. P. Tegelaar, Handwritten comments on an earlier version of this paper, March 6, 2015

    Google Scholar 

Download references

Acknowledgements

This paper was begun during the stay of the first author in February–April 2014 at the Max Planck Institute for Mathematics. She likes to thank for the invitation and the pleasant research atmosphere. The second author was introduced to the subject around 1990 by the late Jerzy Urbanowicz. He will never forget his interest, help and kindness. Further he thanks Prof. T.N. Shorey for helpful discussions in the summer of 2014. We would like to heartily thank Bernd Kellner for helpful e-mail correspondence and patiently answering our Bernoulli number questions. A. Ciolan, P. Tegelaar and W. Zudilin kindly commented on an earlier version of this paper.The cooperation of the authors has its origin in them having met, in 2012, at ELAZ in Schloss Schney (which was also attended by Prof. W. Schwarz). This contribution is our tribute to Prof. W. Schwarz, who was one of the initiators of the ELAZ conference series.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Moree .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 1 Pairs of irregular primes ( p 1, p 2) with p 1 < p 2, p 1 p 2 < 50000, satisfying the conditions of Corollary 3.13
Table 2 Helpful pairs (t, q) a with q ≤ 17
Table 3 Irregular pairs (r, p) along with the corresponding helpful pairs \((t_{j},q_{j})_{a\!\!\pmod q_{j}}\) satisfying the conditions of Proposition 4.5

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baoulina, I.N., Moree, P. (2016). Forbidden Integer Ratios of Consecutive Power Sums. In: Sander, J., Steuding, J., Steuding, R. (eds) From Arithmetic to Zeta-Functions. Springer, Cham. https://doi.org/10.1007/978-3-319-28203-9_1

Download citation

Publish with us

Policies and ethics