Skip to main content

Transforming Growth Factor α and β (TGF-α and TGF-β)

  • Chapter
  • First Online:
Angiogenesis in Health, Disease and Malignancy
  • 1309 Accesses

Abstract

Transforming Growth Factor alpha (TGF-α) is a protein structurally similar to Epidermal Growth Factor (EGF) and a ligand for EGF-receptors, competing with Epidermal Growth Factors. It has been found in a variety of non-neoplastic and neoplastic disorders where angiogenesis is involved or contributes to part of the pathology. TGF-β signaling pathway is involved in many cellular processes in the developing embryo. TGF-α is involved in various corneal diseases and is responsible for the angiogenesis and epidermal hyperplasia in psoriasis and has influence in protection and healing of gastro-intestinal lesions. TGF-β is a potent inducer or inhibitor of angiogenesis by increasing pro-angiogenic growth factors such as VEGFs or by enhancing anti-angiogenic factor productions. It has been found in focal ischemia in stroke and in Alzheimer’s disease with attenuation of beta-amyloid (Aβ), TGF-β has shown potential neuroprotective role in reducing accumulation of Aβ deposition indirectly via angiogenesis. TGF- α overexpression has been detected in oesophageal squamous cell carcinoma and is linked to invasive breast carcinoma. TGF-β promotes the formation of tumor microenvironment by interacting with other growth factors (PDGFs, FGFs and VEGFs) and extracellular matrix (ECM) remodeling and its regulatory role in hepatocyte carcinogenesis has been reported recently. The mediatory role of transforming growth factors in angiogenic signaling pathway in tumor progression or anti-tumor angiogenesis is an emerging therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attisano L, Carcamo J, Ventura F, Weis FMB, Massague J, Wrana JL (1993) Identification of human activin and TGFP Type I receptors that form heteromeric kinase complexes with Type II receptors. Cell 75:9

    Article  Google Scholar 

  • Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, Dimmeler S (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713. doi:10.1126/science.1174381

    Article  CAS  PubMed  Google Scholar 

  • Cabrijan L, Lipozencic J, Batinac T, Lenkovic M, Zgombic ZS (2013) Differences between keratoacanthoma and squamous cell carcinoma using TGF-alpha. Coll Antropol 37(1):147–150

    CAS  PubMed  Google Scholar 

  • Caraci F, Battaglia G, Bruno V, Bosco P, Carbonaro V, Giuffrida ML, Drago F, Sortino MA, Nicoletti F, Copani A (2011) TGF-beta1 pathway as a new target for neuroprotection in Alzheimer’s disease. CNS Neurosci Ther 17:237–249

    Article  CAS  PubMed  Google Scholar 

  • Caraci F, Spampinato S, Sortino MA, Bosco P, Battaglia G, Bruno V, Drago F, Nicoletti F, Copani A (2012) Dysfunction of TGF-beta1 signaling in Alzheimer’s disease: perspectives of neuroprotection. Cell Tissue Res 347:291–301

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Venkat P, Zacharek A, Chopp M (2014) Neurorestorative therapy for stroke. Front Hum Neurosci 8:382. doi:10.3389/fnhum.2014.00382

    PubMed  PubMed Central  Google Scholar 

  • Christoforidis GA, Mohammad Y, Kehagias D, Avutu B, Slivka AP (2005) Angiographic assessment of pial collaterals as a prognostic indicator following intra-arterial thrombolysis for acute ischemic stroke. AJNR Am J Neuroradiol 26:1789–1797

    PubMed  Google Scholar 

  • Ciardiello F, Kim N, McGeady ML, Liscia DS, Saeki T, Bianco C, Salomon DS (1991) Expression of transforming growth factor alpha (TGF alpha) in breast cancer. Ann Oncol 2(3):169–182

    CAS  PubMed  Google Scholar 

  • de Groot RP, Kruijer W (1990) Transcriptional activation by TGF beta 1 mediated by the dyad symmetry element (DSE) and the TPA responsive element (TRE). Biochem Biophys Res Commun 168(3):1074–1081

    Article  PubMed  Google Scholar 

  • Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, Furth EE, Lee WM, Enders GH, Mendell JT, Thomas-Tikhonenko A (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38(9):1060–1065. doi:10.1038/ng1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobolyi A, Vincze C, Pal G, Lovas G (2012) The neuroprotective functions of transforming growth factor Beta proteins. Int J Mol Sci 13(7):8219–8258. doi:10.3390/ijms13078219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle KP, Cekanaviciute E, Mamer LE, Buckwalter MS (2010) TGFbeta signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke. J Neuroinflammation 7:62. doi:10.1186/1742-2094-7-62

    Article  PubMed  PubMed Central  Google Scholar 

  • Elder JT, Fisher GJ, Lindquist PB, Bennett GL, Pittelkow MR, Coffey RJ Jr, Ellingsworth L, Derynck R, Voorhees JJ (1989) Overexpression of transforming growth factor alpha in psoriatic epidermis. Science (New York) 243(4892):811–814

    Article  CAS  Google Scholar 

  • Ferrari G, Cook BD, Terushkin V, Pintucci G, Mignatti P (2009) Transforming growth factor-beta 1 (TGF-beta1) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis. J Cell Physiol 219(2):449–458. doi:10.1002/jcp.21706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierlbeck W, Liu A, Coyle R, Ballermann BJ (2003) Endothelial cell apoptosis during glomerular capillary lumen formation in vivo. J Am Soc Nephrol 14(5):1349–1354

    Article  CAS  PubMed  Google Scholar 

  • Filipe MI, Osborn M, Linehan J, Sanidas E, Brito MJ, Jankowski J (1995) Expression of transforming growth factor alpha, epidermal growth factor receptor and epidermal growth factor in precursor lesions to gastric carcinoma. Br J Cancer 71(1):30–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng L, Chaudhuri A, Talmon G, Wisecarver JL, Wang J (2013) TGF-Beta suppresses VEGFA-mediated angiogenesis in colon cancer metastasis. PLoS One 8(3):e59918. doi:10.1371/journal.pone.0059918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Issa R, AlQteishat A, Mitsios N, Saka M, Krupinski J, Tarkowski E, Gaffney J, Slevin M, Kumar S, Kumar P (2005) Expression of basic fibroblast growth factor mRNA and protein in the human brain following ischaemic stroke. Angiogenesis 8(1):53–62. doi:10.1007/s10456-005-5613-8

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Mu J, Wang X, Ye X, Si L, Ning S, Li Z, Li Y (2014a) The repressive effect of miR-148a on TGF beta-SMADs signal pathway is involved in the glabridin-induced inhibition of the cancer stem cells-like properties in hepatocellular carcinoma cells. PLoS One 9(5):e96698. doi:10.1371/journal.pone.0096698

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Wang X, Liu Q, Shen J, Li Z, Li Y, Zhang J (2014b) Inhibition of TGF-beta/SMAD3/NF-kappaB signaling by microRNA-491 is involved in arsenic trioxide-induced anti-angiogenesis in hepatocellular carcinoma cells. Toxicol Lett 231:55–61. doi:10.1016/j.toxlet.2014.08.024

    Google Scholar 

  • Konturek PC, Konturek SJ, Brzozowski T, Ernst H (1995) Epidermal growth factor and transforming growth factor-alpha: role in protection and healing of gastric mucosal lesions. Eur J Gastroenterol Hepatol 7(10):933–937

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Shimada Y, Uchida S, Maeda M, Kawabe A, Mori A, Itami A, Kano M, Watanabe G, Imamura M (2000) TGF-alpha as well as VEGF, PD-ECGF and bFGF contribute to angiogenesis of esophageal squamous cell carcinoma. Int J Oncol 17(3):453–460

    CAS  PubMed  Google Scholar 

  • Li JH, Zhu HJ, Huang XR, Lai KN, Johnson RJ, Lan HY (2002) Smad7 inhibits fibrotic effect of TGF-Beta on renal tubular epithelial cells by blocking Smad2 activation. J Am Soc Nephrol 13(6):1464–1472

    Article  CAS  PubMed  Google Scholar 

  • Magloire H, Romeas A, Melin M, Couble ML, Bleicher F, Farges JC (2001) Molecular regulation of odontoblast activity under dentin injury. Adv Dent Res 15:46–50

    Article  CAS  PubMed  Google Scholar 

  • Melin M, Joffre-Romeas A, Farges JC, Couble ML, Magloire H, Bleicher F (2000) Effects of TGFbeta1 on dental pulp cells in cultured human tooth slices. J Dent Res 79(9):1689–1696

    Article  CAS  PubMed  Google Scholar 

  • Mirzoeva S, Kim ND, Chiu K, Franzen CA, Bergan RC, Pelling JC (2008) Inhibition of HIF-1 alpha and VEGF expression by the chemopreventive bioflavonoid apigenin is accompanied by Akt inhibition in human prostate carcinoma PC3-M cells. Mol Carcinog 47(9):686–700. doi:10.1002/mc.20421

    Article  CAS  PubMed  Google Scholar 

  • Mirzoeva S, Franzen CA, Pelling JC (2014) Apigenin inhibits TGF-beta-induced VEGF expression in human prostate carcinoma cells via a Smad2/3- and Src-dependent mechanism. Mol Carcinog 53(8):598–609. doi:10.1002/mc.22005

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Li JH, Garcia G, Mu W, Piek E, Bottinger EP, Chen Y, Zhu HJ, Kang DH, Schreiner GF, Lan HY, Johnson RJ (2004) TGF-beta induces proangiogenic and antiangiogenic factors via parallel but distinct Smad pathways. Kidney Int 66(2):605–613. doi:10.1111/j.1523-1755.2004.00780.x

    Article  CAS  PubMed  Google Scholar 

  • Nakashima M, Toyono T, Murakami T, Akamine A (1998) Transforming growth factor-beta superfamily members expressed in rat incisor pulp. Arch Oral Biol 43(9):745–751

    Article  CAS  PubMed  Google Scholar 

  • Navaratna D, Guo S, Arai K, Lo EH (2009) Mechanisms and targets for angiogenic therapy after stroke. Cell Adh Migr 3(2):216–223

    Article  PubMed  PubMed Central  Google Scholar 

  • Otten J, Bokemeyer C, Fiedler W (2010) Tgf-Beta superfamily receptors-targets for antiangiogenic therapy? J Oncol 2010:317068. doi:10.1155/2010/317068

    Article  PubMed  PubMed Central  Google Scholar 

  • Piattelli A, Rubini C, Fioroni M, Tripodi D, Strocchi R (2004) Transforming growth factor-beta 1 (TGF-beta 1) expression in normal healthy pulps and in those with irreversible pulpitis. Int Endod J 37(2):114–119

    Article  CAS  PubMed  Google Scholar 

  • Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M, Deng C, Kucherlapati R, Bottinger EP, Roberts AB (2001) Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. J Biol Chem 276(23):19945–19953. doi:10.1074/jbc.M102382200

    Article  CAS  PubMed  Google Scholar 

  • Prime SS, Pring M, Davies M, Paterson IC (2004) TGF-beta signal transduction in oro-facial health and non-malignant disease (part I). Crit Rev Oral Biol Med 15(6):324–336

    Article  CAS  PubMed  Google Scholar 

  • Seystahl K, Tritschler I, Szabo E, Tabatabai G, Weller M (2015) Differential regulation of TGF-beta-induced, ALK-5-mediated VEGF release by SMAD2/3 versus SMAD1/5/8 signaling in glioblastoma. Neuro Oncol 17:254–265. doi:10.1093/neuonc/nou218

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith AJ, Matthews JB, Hall RC (1998) Transforming growth factor-beta1 (TGF-beta1) in dentine matrix. Ligand activation and receptor expression. Eur J Oral Sci 106(Suppl 1):179–184

    Article  CAS  PubMed  Google Scholar 

  • Soares R, Pereira MB, Silva C, Amendoeira I, Wagner R, Ferro J, Schmitt FC (2000) Expression of TGF-alpha and EGFR in breast cancer and its relation to angiogenesis. Breast J 6(3):171–177

    Article  CAS  PubMed  Google Scholar 

  • Sporn MB, Roberts AB, Wakefield LM, Assoian RK (1986) Transforming growth factor-B biological function and chemical structure. Science 233:2

    Article  Google Scholar 

  • Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, Lin AH, Crews L, Tremblay P, Mathews P (2006) Deficiency in neuronal TGF-beta signaling promotes neurodegenration and Alzheimer’s pathology. J Clin Invest 116:3060–3069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Hsu SH, Majumder S, Kutay H, Huang W, Jacob ST, Ghoshal K (2010) TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 29(12):1787–1797. doi:10.1038/onc.2009.468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M, Wang X-F, Massague J (1992) TGFβ signals through a heteromeric protein kinase receptor complex. Cell 71:11

    Article  Google Scholar 

  • Yang SY, Miah A, Pabari A, Winslet M (2011) Growth factors and their receptors in cancer metastases. Front Biosci (Landmark Ed) 16:531–538

    Article  CAS  Google Scholar 

  • Zhou F, Xiang Z, Peiling L, Junjie J, Zhen LX (2001) The expression and changes of heat shock protein 70, MDA and haemorheology in rat cortex after diffuse axonal injury with secondary insults. J Clin Neurosci 8(3):250–252. doi:10.1054/jocn.2000.0760

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salajegheh, A. (2016). Transforming Growth Factor α and β (TGF-α and TGF-β). In: Angiogenesis in Health, Disease and Malignancy. Springer, Cham. https://doi.org/10.1007/978-3-319-28140-7_53

Download citation

Publish with us

Policies and ethics